具有Maxpooling1D和channel_first的Keras模型

Gre*_*l_f 7 python machine-learning conv-neural-network keras max-pooling

我目前尝试在Keras中为时间序列分类构建顺序模型时遇到问题.我想处理channels_first数据,因为从处理的角度来看它更方便(不过我只使用一个通道).这工作得很好了Convolution1D我使用的图层,我可以指定data_sample='channels_first',但不知何故,这不会对工作Maxpooling1D,因为它似乎不具有此选项.

我想要构建的模型结构如下:

model = Sequential()
model.add(Convolution1D(filters=16, kernel_size=35, activation='relu', input_shape=(1, window_length), data_format='channels_first'))
model.add(MaxPooling1D(pool_size=5)
model.add(Convolution1D(filters=16, kernel_size=10, activation='relu', data_format='channels_first'))
[...] #several other layers here
Run Code Online (Sandbox Code Playgroud)

window_length = 5000添加所有三个图层后,我得到以下摘要:

_________________________________________________________________
Layer (type)                 Output Shape              Param #  
=================================================================
conv1d_1 (Conv1D)           (None, 32, 4966)          1152     
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 4, 4966)           0        
_________________________________________________________________
conv1d_2 (Conv1D)           (None, 16, 4957)          656      
=================================================================
Total params: 1,808
Trainable params: 1,808
Non-trainable params: 0
Run Code Online (Sandbox Code Playgroud)

现在,我想知道这是否正确,因为我期望第三维(即特征图中的神经元数)而不是第二维(即过滤器的数量)被汇集层减少?在我看来,MaxPooling1D不承认channels_first订购和而Keras文档说存在一个关键词data_formatMaxPooling2D,有一个为没有这样的关键字MaxPooling1D.

我用channels_last数据格式测试了整个设置,它按照我的预期工作.但由于从转换channels_firstchannels_last需要相当长的一段时间对我来说,我真的宁愿这项工作channels_first.我觉得我只是遗漏了一些东西.

如果您需要更多信息,请与我们联系.

tod*_*day 4

更新正如 @HSK 在评论中提到的,由于此 PR,data_format该参数现在得到了分层支持。MaxPooling


那么,一种替代方法是使用该Permute层(并删除channels_first第二个卷积层):

model = Sequential()
model.add(Convolution1D(filters=16, kernel_size=35, activation='relu', input_shape=(1, 100), data_format='channels_first'))
model.add(Permute((2, 1)))
model.add(MaxPooling1D(pool_size=5))
model.add(Convolution1D(filters=16, kernel_size=10, activation='relu'))

model.summary()
Run Code Online (Sandbox Code Playgroud)

型号总结:

Layer (type)                 Output Shape              Param #   
=================================================================
conv1d_7 (Conv1D)            (None, 16, 66)            576       
_________________________________________________________________
permute_1 (Permute)          (None, 66, 16)            0         
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 13, 16)            0         
_________________________________________________________________
conv1d_8 (Conv1D)            (None, 4, 16)              2096      
=================================================================
Total params: 2,672
Trainable params: 2,672
Non-trainable params: 0
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)