sta*_*wer 7 opencv linear-algebra computer-vision pose-estimation opencv-solvepnp
我想估计采用两种不同的方法相对位置:solvePNP 和recoverPose,和好像[R矩阵是看起来不错相对于一定的误差,但翻译载体是完全不同的.我究竟做错了什么?通常,我需要使用两种方法找到从第1帧到第2帧的相对位置.
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners1,
cameraMatrix, distortion, rvecPNP1, tvecPNP1);
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners2,
cameraMatrix, distortion, rvecPNP2, tvecPNP2);
Mat rodriguesRPNP1, rodriguesRPNP2;
cv::Rodrigues(rvecPNP1, rodriguesRPNP1);
cv::Rodrigues(rvecPNP2, rodriguesRPNP2);
rvecPNP = rodriguesRPNP1.inv() * rodriguesRPNP2;
tvecPNP = rodriguesRPNP1.inv() * (tvecPNP2 - tvecPNP1);
Mat E = findEssentialMat(corners1, corners2, cameraMatrix);
recoverPose(E, corners1, corners2, cameraMatrix, rvecRecover, tvecRecover);
Run Code Online (Sandbox Code Playgroud)
输出:
solvePnP: R:
[0.99998963, 0.0020884471, 0.0040569459;
-0.0020977913, 0.99999511, 0.0023003994;
-0.0040521105, -0.0023088832, 0.99998915]
solvePnP: t:
[0.0014444492; 0.00018377086; -0.00045027508]
recoverPose: R:
[0.9999900052294586, 0.0001464890570028249, 0.004468554816042664;
-0.0001480011106435358, 0.9999999319097322, 0.0003380476328946509;
-0.004468504991498534, -0.0003387056052618761, 0.9999899588204144]
recoverPose: t:
[0.1492094050828522; -0.007288328116585327; -0.9887787587261805]
Run Code Online (Sandbox Code Playgroud)
更新:我已经改变了在solvePnP之后组成R -s和t -s的方式:
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners1,
cameraMatrix, distortion, rvecPNP1, tvecPNP1);
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners2,
cameraMatrix, distortion, rvecPNP2, tvecPNP2);
Mat rodriguesRPNP1, rodriguesRPNP2;
cv::Rodrigues(rvecPNP1, rodriguesRPNP1);
cv::Rodrigues(rvecPNP2, rodriguesRPNP2);
rvecPNP = rodriguesRPNP1.inv() * rodriguesRPNP2;
tvecPNP = rodriguesRPNP2 * tvecPNP2 - rodriguesRPNP1 * tvecPNP1;
Run Code Online (Sandbox Code Playgroud)
用相机的实际动作检查这个构图,看起来是正确的.
此外,recoverPose现在从非平面物体获得点,并且这些点在一般位置.测试的运动也不是纯旋转以避免退化情况,但仍然是平移向量非常不同.
第一帧:
第一帧:绿色点被跟踪和匹配,并且可以在第二帧上看到(在第二帧上它们是蓝色的):
第二帧:
第二帧:recoverPose的一般位置的跟踪点:

cv::solvePnP(constants::calibration::rig.rig3DPoints, corners1,
cameraMatrix, distortion, rvecPNP1, tvecPNP1);
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners2,
cameraMatrix, distortion, rvecPNP2, tvecPNP2);
Mat rodriguesRPNP1, rodriguesRPNP2;
cv::Rodrigues(rvecPNP1, rodriguesRPNP1);
cv::Rodrigues(rvecPNP2, rodriguesRPNP2);
rvecPNP = rodriguesRPNP1.inv() * rodriguesRPNP2;
tvecPNP = rodriguesRPNP2 * tvecPNP2 - rodriguesRPNP1 * tvecPNP1;
CMT cmt;
// ...
// ... cmt module finds and tracks points here
// ...
std::vector<Point2f> coords1 = cmt.getPoints();
std::vector<int> classes1 = cmt.getClasses();
cmt.processFrame(imGray2);
std::vector<Point2f> coords2 = cmt.getPoints();
std::vector<int> classes2 = cmt.getClasses();
std::vector<Point2f> coords3, coords4;
// Make sure that points and their classes are in the same order
// and the vectors of the same size
utils::fuse(coords1, classes1, coords2, classes2, coords3, coords4,
constants::marker::randomPointsInMark);
Mat E = findEssentialMat(coords3, coords4, cameraMatrix, cv::RANSAC, 0.9999);
int numOfInliers = recoverPose(E, coords3, coords4, cameraMatrix,
rvecRecover, tvecRecover);
Run Code Online (Sandbox Code Playgroud)
输出:
solvePnP: R:
[ 0.97944641, 0.072178222, 0.18834825;
-0.07216832, 0.99736851, -0.0069195116;
-0.18835205, -0.0068155089, 0.98207784]
solvePnP: t:
[-0.041602995; 0.014756925; 0.025671512]
recoverPose: R:
[0.8115000456601129, 0.03013366385237642, -0.5835748779689431;
0.05045522914264587, 0.9913266281414459, 0.1213498503908197;
0.5821700316452212, -0.1279198133228133, 0.80294120308629]
recoverPose: t:
[0.6927871089455181; -0.1254653960405977; 0.7101439685551703]
recoverPose: numOfInliers: 18
Run Code Online (Sandbox Code Playgroud)
我还尝试了相机静止时的情况(没有R,没有t),R -s接近但翻译不是.那么我在这里缺少什么?
小智 7
如果您使用单目相机系统来查找帧之间的相对位置,那么通过分解基本矩阵,您无法获得现实世界中的绝对平移。请注意,从recoverPose() 获得的所有平移向量都是单位向量。“通过分解 E,您只能得到平移的方向,因此函数返回单位 t。”,来自decomposeEssentialMat()的文档。
对于solvePnP(),它使用世界坐标系的3D点。因此,由solvePnP()计算出的平移应该是现实世界中的绝对值。对于旋转 R,两种方法都会产生正确的答案。
| 归档时间: |
|
| 查看次数: |
955 次 |
| 最近记录: |