bbi*_*asi 3 interpolation r spatial geospatial r-sp
以Ege Rubak提供的答案为例,如何使用中的函数预测某个特定点(例如lat = -23.49184和)的pH值?long = 152.07185idw()R
我找到的最接近的答案是通过RPubs中的此文档,但我不能仅提取特定值。
library(gstat)
library(sp)
lat <- c(-23.49174, -23.49179, -23.49182, -23.49183, -23.49185, -23.49187)
long <- c(152.0718, 152.0718, 152.0717, 152.0717, 152.0717, 152.0717)
pH <- c(8.222411, 8.19931, 8.140428, 8.100752, 8.068141, 8.048852)
sample <- data.frame(lat, long, pH)
x.range <- range(sample$long)
y.range <- range(sample$lat)
x<-seq(x.range[1], x.range[2], length.out=20)
y<-seq(y.range[1], y.range[2], length.out=20)
grd<-expand.grid(x,y)
coordinates(sample) = ~long+lat
coordinates(grd) <- ~ Var1+Var2
gridded(grd) <- TRUE
proj4string(sample) <- CRS("+proj=longlat +datum=WGS84")
proj4string(grd) <- CRS("+proj=longlat +datum=WGS84")
dat.idw <- idw(formula=pH ~ 1, locations = sample, newdata = grd, idp = 2.0)
#> [inverse distance weighted interpolation]
Run Code Online (Sandbox Code Playgroud)
我没有在评论中特别询问Ege Rubak,因为我尚没有50个声誉。
您不需要网格。以表示观察到的位置的一致方式提供新位置。
library(gstat)
library(sp)
lat <- c(-23.49174, -23.49179, -23.49182, -23.49183, -23.49185, -23.49187)
long <- c(152.0718, 152.0718, 152.0717, 152.0717, 152.0717, 152.0717)
pH <- c(8.222411, 8.19931, 8.140428, 8.100752, 8.068141, 8.048852)
sample <- data.frame(lat, long, pH)
coordinates(sample) = ~long+lat
proj4string(sample) <- CRS("+proj=longlat +datum=WGS84")
loc <- data.frame(long = 152.07185, lat = -23.49184)
coordinates(loc) <- ~ long + lat
proj4string(loc) <- CRS("+proj=longlat +datum=WGS84")
oo <- idw(formula=pH ~ 1, locations = sample, newdata = loc, idp = 2.0)
oo@data$var1.pred
#[1] 8.158494
Run Code Online (Sandbox Code Playgroud)