DeL*_*n88 6 machine-learning pytorch
我是pytorch的新手。以下是使用nn模块使用一些随机数据训练简单的单层模型的基本示例(从此处开始)
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
torch.nn.ReLU(),
torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
y_pred = model(x)
loss = loss_fn(y_pred, y)
print(t, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
Run Code Online (Sandbox Code Playgroud)
据我了解,该示例中的批处理大小等于1,换句话说,一个点(64个点)用于计算梯度和更新参数。我的问题是:如何修改此示例以训练批大小大于1的模型?
要在 PyTorch 基本示例中包含批量大小,最简单、最干净的方法是使用 PyTorchtorch.utils.data.DataLoader
和torch.utils.data.TensorDataset
.
Dataset 存储样本及其相应的标签,DataLoader 围绕 Dataset 包装一个可迭代对象,以便轻松访问样本。
DataLoader
将负责为您创建批次。
基于您的问题,有一个完整的代码片段,其中我们迭代 2 个时期的 10000 个示例的数据集,批量大小为 64:
import torch
from torch.utils.data import DataLoader, TensorDataset
# Create the dataset with N_SAMPLES samples
N_SAMPLES, D_in, H, D_out = 10000, 1000, 100, 10
x = torch.randn(N_SAMPLES, D_in)
y = torch.randn(N_SAMPLES, D_out)
# Define the batch size and the number of epochs
BATCH_SIZE = 64
N_EPOCHS = 2
# Use torch.utils.data to create a DataLoader
# that will take care of creating batches
dataset = TensorDataset(x, y)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
# Define model, loss and optimizer
model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
torch.nn.ReLU(),
torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
# Get the dataset size for printing (it is equal to N_SAMPLES)
dataset_size = len(dataloader.dataset)
# Loop over epochs
for epoch in range(N_EPOCHS):
print(f"Epoch {epoch + 1}\n-------------------------------")
# Loop over batches in an epoch using DataLoader
for id_batch, (x_batch, y_batch) in enumerate(dataloader):
y_batch_pred = model(x_batch)
loss = loss_fn(y_batch_pred, y_batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Every 100 batches, print the loss for this batch
# as well as the number of examples processed so far
if id_batch % 100 == 0:
loss, current = loss.item(), (id_batch + 1)* len(x_batch)
print(f"loss: {loss:>7f} [{current:>5d}/{dataset_size:>5d}]")
Run Code Online (Sandbox Code Playgroud)
输出应该类似于:
Epoch 1
-------------------------------
loss: 643.433716 [ 64/10000]
loss: 648.195435 [ 6464/10000]
Epoch 2
-------------------------------
loss: 613.619873 [ 64/10000]
loss: 625.018555 [ 6464/10000]
Run Code Online (Sandbox Code Playgroud)
实际上N
是批量大小。所以你只需要将N
当前它的设置修改为 64。所以你在每个训练批次中都有 64 个大小为 / dim 的向量D_in
。
我检查了您发布的链接,您也可以查看评论-也有一些解释:)
# -*- coding: utf-8 -*-
import numpy as np
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)
# Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)
learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.dot(w1)
h_relu = np.maximum(h, 0)
y_pred = h_relu.dot(w2)
# Compute and print loss
loss = np.square(y_pred - y).sum()
print(t, loss)
# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.T.dot(grad_y_pred)
grad_h_relu = grad_y_pred.dot(w2.T)
grad_h = grad_h_relu.copy()
grad_h[h < 0] = 0
grad_w1 = x.T.dot(grad_h)
# Update weights
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
Run Code Online (Sandbox Code Playgroud)