您的内核可能是在没有 NUMA 支持的情况下构建的

Zul*_*aev 13 linux-kernel numa tensorflow

我有 Jetson TX2、python 2.7、Tensorflow 1.5、CUDA 9.0

Tensorflow 似乎工作正常,但每次运行该程序时,我都会收到此警告:

with tf.Session() as sess:
    print (sess.run(y,feed_dict))
Run Code Online (Sandbox Code Playgroud)

...

2018-08-07 18:07:53.200320: E tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:881] could not open file to read NUMA node: /sys/bus/pci/devices/0000:00:00.0/numa_node Your kernel may have been built without NUMA support.

2018-08-07 18:07:53.200427: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1105] Found device 0 with properties:

name: NVIDIA Tegra X2
major: 6 
minor: 2 
memoryClockRate(GHz): 1.3005

pciBusID: 0000:00:00.0

totalMemory: 7.66GiB 
freeMemory: 1.79GiB

2018-08-07 18:07:53.200474: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: NVIDIA Tegra X2, pci bus id: 0000:00:00.0, compute capability: 6.2)

2018-08-07 18:07:53.878574: I tensorflow/core/common_runtime/gpu/gpu_device.cc:859] Could not identify NUMA node of /job:localhost/replica:0/task:0/device:GPU:0, defaulting to 0. Your kernel may not have been built with NUMA support.
Run Code Online (Sandbox Code Playgroud)

我应该担心吗?或者说这是可以忽略不计的事情?

小智 12

这对您来说应该不是问题,因为您不需要该主板的 NUMA 支持(它只有一个内存控制器,因此内存访问是统一的)。

另外,我在 nvidia 论坛上发现了这篇文章,似乎证实了这一点。