Ric*_*ick 1 parallel-processing cuda gpu matrix-multiplication
我最近开始使用CUDA开始使用GPU.作为入门程序,我试图有效地实现简单的矩阵乘法
C = AB
,从朴素矩阵乘法开始(每个线程加载C中元素的A和B的所有元素),平铺实现(线程协同加载来自共享内存中的块中A和B的元素块以减少全局内存交通)提供良好的加速.但是,在平铺实现中,对全局内存的访问也不是合并的顺序.因此,为了提高性能,最好转置矩阵B然后相乘.以下是我的代码,
#include<stdio.h>
#include<stdlib.h>
#include<cuda_runtime.h>
#include <time.h>
#include <sys/time.h>
void querydeviceprop();
void allocate_matrix(float *h_a, float *h_b, int matDim);
void verify(float *h_c, float *h_c_check, int matDim);
void print_matrix(float *ha, int m,int n);
void transpose_matrix(float *ha, int matDim);
void mat_mul();
#define TILE_WIDTH 16 //should be equal to numThread for tiling implementation
__global__ void MatrixMult_tiling(float *d_a,float *d_b,float *d_c, int dim){
__shared__ float ta[TILE_WIDTH][TILE_WIDTH]; //to load one tile of A
__shared__ float tb[TILE_WIDTH][TILE_WIDTH]; //to load one tile of A
int bx,by,tx,ty,i,j;
float res;
int row, col;
bx=blockIdx.x; by=blockIdx.y;
tx=threadIdx.x; ty=threadIdx.y;
row=by*TILE_WIDTH+ty;
col=bx*TILE_WIDTH+tx;
res=0;
for(i=0;i<dim/TILE_WIDTH;i++){
//collaboratively load the elements. Each thread loads a single element.
ta[ty][tx]=d_a[row*dim+TILE_WIDTH*i+tx];
tb[ty][tx]=d_b[(ty+i*TILE_WIDTH)*dim+col];
__syncthreads();
for(j=0;j<TILE_WIDTH;j++){
res=res+ta[ty][j]*tb[j][tx];
}
__syncthreads();
}
d_c[row*dim+col]=res;
}
__global__ void MatrixMult_tiling_coalesced(float *d_a,float *d_b,float *d_c, int dim){
__shared__ float ta[TILE_WIDTH][TILE_WIDTH]; //to load one tile of A
__shared__ float tb[TILE_WIDTH][TILE_WIDTH]; //to load one tile of A
int bx,by,tx,ty,i,j;
float res;
int row, col;
bx=blockIdx.x; by=blockIdx.y;
tx=threadIdx.x; ty=threadIdx.y;
row=by*TILE_WIDTH+ty;
col=bx*TILE_WIDTH+tx;
res=0;
for(i=0;i<dim/TILE_WIDTH;i++){
//collaboratively load the elements. Each thread loads a single element.
ta[ty][tx]=d_a[row*dim+TILE_WIDTH*i+tx];
tb[ty][tx]=d_b[bx*TILE_WIDTH*dim + TILE_WIDTH*i+ty*dim+tx];
__syncthreads();
for(j=0;j<TILE_WIDTH;j++){
res=res+ta[ty][j]*tb[tx][j];
}
__syncthreads();
}
d_c[row*dim+col]=res;
}
__global__ void MatrixMult_naive(float *d_a,float *d_b,float *d_c, int dim){
int row,col,i;
col=blockIdx.y*blockDim.y+threadIdx.y;
row=blockIdx.x*blockDim.x+threadIdx.x;
float res;
if(row<dim && col<dim){
res=0;
for(i=0;i<dim;i++){
res=res+(d_a[row*dim+i]*d_b[i*dim+col]);
}
d_c[row*dim+col]=res;
}
}
int main(){
mat_mul();
return 0;
}
void mat_mul(){
cudaSetDevice(0);
time_t t;
cudaError_t err = cudaSuccess;
srand((unsigned) time(&t));
cudaEvent_t start, stop;
float milliseconds=0;
cudaEventCreate(&start);
cudaEventCreate(&stop);
int matDim = 8192;
float *h_a, *h_b, *h_c, *h_c_check;
/*declare the host memories*/
h_a=(float *)malloc(matDim*matDim*sizeof(float));
h_b=(float *)malloc(matDim*matDim*sizeof(float));
h_c=(float *)malloc(matDim*matDim*sizeof(float));
h_c_check=(float *)malloc(matDim*matDim*sizeof(float));
// Verify that allocations succeeded
if (h_a == NULL || h_b == NULL || h_c == NULL || h_c_check ==NULL)
{
fprintf(stderr, "Failed to allocate host vectors!\n");
exit(EXIT_FAILURE);
}
allocate_matrix(h_a,h_b,matDim); // allocate memory to hold the matrix
//allocate cuda memory
float *d_a=NULL;
float *d_b=NULL;
float *d_c=NULL;
err=cudaMalloc((void **)&d_a, matDim*matDim*sizeof(float));
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to allocate device matrix A (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err=cudaMalloc((void **)&d_b, matDim*matDim*sizeof(float));
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to allocate device matrix A (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err=cudaMalloc((void **)&d_c, matDim*matDim*sizeof(float));
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to allocate device matrix A (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
printf("Matrix dimension is : %d\n",matDim);
// Copy the host input matrix A and B in host memory to the device matrix in device memory
//printf("Copy input data from the host memory to the CUDA device\n");
cudaEventRecord(start);
err = cudaMemcpy(d_a, h_a, matDim*matDim*sizeof(float), cudaMemcpyHostToDevice);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
//printf("GPU memcpy matrix A %10.10f ms\n",milliseconds);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
cudaEventRecord(start);
err = cudaMemcpy(d_b, h_b, matDim*matDim*sizeof(float), cudaMemcpyHostToDevice);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
//printf("GPU memcpy matrix B %10.10f ms\n",milliseconds);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
/*constants for kernel launch*/
int numThread=16; //number of threads per Block axis
int numBlocks=matDim/numThread;
if(matDim%numThread)
numBlocks++;
dim3 dimGrid(numBlocks,numBlocks);
dim3 dimBlock(numThread,numThread);
//-------------------------------------------------------------
//-------transpose and copy to GPU-------
transpose_matrix(h_b, matDim);//transpose first the b matrix
err = cudaMemcpy(d_b, h_b, matDim*matDim*sizeof(float), cudaMemcpyHostToDevice);
cudaEventSynchronize(stop);
if (err != cudaSuccess){
fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
//--------transpose and copy ends-------------
cudaEventRecord(start);
MatrixMult_tiling_coalesced<<<dimGrid,dimBlock>>>(d_a, d_b, d_c, matDim);
cudaEventRecord(stop);
err = cudaGetLastError();
if (err != cudaSuccess){
fprintf(stderr, "Failed to launch vector matrix kernel (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
printf("GPU time tiled & coalesced %10.10f ms\n",milliseconds);
//printf("Copy output data from the CUDA device to the host memory\n");
cudaEventRecord(start);
err = cudaMemcpy(h_c_check, d_c, matDim*matDim*sizeof(float), cudaMemcpyDeviceToHost);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
//printf("GPU memcpy time tiled & coalesced %10.10f ms\n",milliseconds);
//------------transpose back the original B matrix----------------
transpose_matrix(h_b, matDim);//transpose first the b matrix
err = cudaMemcpy(d_b, h_b, matDim*matDim*sizeof(float), cudaMemcpyHostToDevice);
cudaEventSynchronize(stop);
if (err != cudaSuccess){
fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
//------------transpose back the original matrix ends-------------
//-------------------------------------------------------------
cudaEventRecord(start);
MatrixMult_tiling<<<dimGrid,dimBlock>>>(d_a, d_b, d_c, matDim);
cudaEventRecord(stop);
err = cudaGetLastError();
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to launch vector matrix kernel (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
printf("GPU time tiled %10.10f ms\n",milliseconds);
//printf("Copy output data from the CUDA device to the host memory\n");
cudaEventRecord(start);
err = cudaMemcpy(h_c, d_c, matDim*matDim*sizeof(float), cudaMemcpyDeviceToHost);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
//printf("GPU memcpy time tiled %10.10f ms\n",milliseconds);
//-------------------------------------------------------------
/*
cudaEventRecord(start);
MatrixMult_naive<<<dimGrid,dimBlock>>>(d_a, d_b, d_c, matDim);
cudaEventRecord(stop);
err = cudaGetLastError();
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to launch vector matrix kernel (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
printf("GPU time naive %10.10f ms\n",milliseconds);
printf("Copy output data from the CUDA device to the host memory\n");
cudaEventRecord(start);
err = cudaMemcpy(h_c, d_c, matDim*matDim*sizeof(float), cudaMemcpyDeviceToHost);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&milliseconds, start, stop);
printf("GPU memcpy time naive %10.10f ms\n",milliseconds);
*/
//-------------------------------------------------------------
verify(h_c, h_c_check, matDim);
// Free device global memory
err = cudaFree(d_a);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaFree(d_b);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
err = cudaFree(d_c);
if (err != cudaSuccess)
{
fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// Free host memory
free(h_a);
free(h_b);
free(h_c);
printf("Done\n");
}
void allocate_matrix(float *h_a, float *h_b, int matDim){
int i,j;
// Initialize the host input vectors
for (i = 0; i < matDim; i++)
{
for(j=0;j< matDim;j++){
h_a[i*matDim+j] = rand()%10;
h_b[i*matDim+j] = rand()%10;
}
}
}
void print_matrix(float *ha, int m,int n){
int i, j;
for(i=0;i<m;i++){
for(j=0;j<n;j++){
printf(" %.1f ",ha[i*m+j]);
}
printf("\n");
}
}
void transpose_matrix(float *h_a, int matDim){
int i, j;
int temp;
for(i=0;i<matDim;i++)
{
for(j=0;j<i;j++)
{
temp=h_a[i*matDim+j];
h_a[i*matDim+j]=h_a[j*matDim+i];
h_a[j*matDim+i]=temp;
}
}
}
void verify(float *h_c, float *h_c_check, int matDim){
int i,j;
//check the code
for (i = 0; i < matDim; i++)
{
for(j=0;j<matDim;j++){
if (fabs(h_c[i*matDim+j] - h_c_check[i*matDim+j]) > 1e-5)
{
printf("cpu : %f , gpu : %f\t",h_c[i*matDim+j],h_c_check[i*matDim+j]);
fprintf(stderr, "Result verification failed at element %d,%d !\n\n", i,j);
exit(EXIT_FAILURE);
}
}
}
printf("Test PASSED\n");
}
Run Code Online (Sandbox Code Playgroud)
MatrixMult_tiling_coalesced并且void MatrixMult_tiling分别是有和没有colalesced memroy访问B元素的函数.
现在,问题是所花费的时间MatrixMult_tiling_coalesced几乎是所用时间的两倍MatrixMult_tiling.据我所知,在MatrixMult_tiling每个瓷砖中,元素以合并的方式(即按行主要顺序)加载在瓷砖中,但瓷砖沿着列排列,而瓷砖MatrixMult_tiling_coalesced沿着一排排列,因此功能MatrixMult_tiling_coalesced应该比另一个快.但在实践中我可以看到相反的情况.如果有人能指出原因,我将不胜感激.事先提醒..
编辑1:在罗伯特的回答(见下文)之后,我理解问题是在elemntwise乘法期间的加载操作.
tb[ty][tx]=d_b[bx*TILE_WIDTH*dim + TILE_WIDTH*i+ty*dim+tx];]
Run Code Online (Sandbox Code Playgroud)
至
tb[tx][ty]=d_b[bx*TILE_WIDTH*dim + TILE_WIDTH*i+ty*dim+tx];
Run Code Online (Sandbox Code Playgroud)
和
res=res+ta[ty][j]*tb[tx][j];
Run Code Online (Sandbox Code Playgroud)
至
res=res+ta[ty][j]*tb[j][tx];
Run Code Online (Sandbox Code Playgroud)
这种功能的性能MatrixMult_tiling_coalesced从1500毫秒增加到1000毫秒.但是,该功能MatrixMult_tiling仅需879 ms.因此,合并的例程仍然较慢.我不明白现在的问题在哪里.
编辑2:我意识到在编辑1中,我刚刚将银行冲突问题从元素乘法移动到元素加载部分.代码中的后续更改没有银行冲突,
tb[tx][ty]=d_b[bx*TILE_WIDTH*dim + TILE_WIDTH*i+ty*dim+tx];
Run Code Online (Sandbox Code Playgroud)
至
tb[ty][tx]=d_b[bx*TILE_WIDTH*dim + TILE_WIDTH*i+ty*dim+tx];
Run Code Online (Sandbox Code Playgroud)
和
res=res+ta[ty][j]*tb[j][tx];
Run Code Online (Sandbox Code Playgroud)
至
res=res+ta[ty][j]*tb[ty][j];
Run Code Online (Sandbox Code Playgroud)
但它仍然比MatrixMult_tiling功能稍慢.该MatrixMult_tiling_coalesced功能需要982 ms和870 ms的MatrixMult_tiling功能.MatrixMult_tiling如果不是更快,它至少应该相似.
最终编辑:
编辑2将不会产生正确的结果.因此编辑1的代码将是最佳的.转置被乘数矩阵之一可能不是一个好主意.:-(
谢谢大家的帮助.
B当然不是我要转置的矩阵C=AB.但这既不是在这里也不是在那里.
我不确定你为什么这么想:
在平铺实现中,对全局内存的访问也不是合并的顺序
我没有看到您的任何代码行MatrixMult_tiling导致未合并访问.
为了确保我们不会超越术语,"合并"或"未合并"是我们应用于访问全局内存模式(不是共享内存)的术语.您的全局内存访问模式位于平铺内核的这些行中:
ta[ty][tx]=d_a[row*dim+TILE_WIDTH*i+tx];
tb[ty][tx]=d_b[(ty+i*TILE_WIDTH)*dim+col];
...
d_c[row*dim+col]=res;
Run Code Online (Sandbox Code Playgroud)
并且这些模式对全局内存都没有解除合并.在每个生成的索引到的d_a,d_b并且d_c,如果执行替换,你会发现threadIdx.x变量存在于所有的人,并没有被任何值相乘,常数或以其他方式.因此,这些模式将全部合并(很好).
如果有人能指出原因,我将不胜感激.
在共享内存方面你做得不好.
在平铺内核中,乘法运算如下所示:
res=res+ta[ty][j]*tb[j][tx];
Run Code Online (Sandbox Code Playgroud)
对于这种情况:
ta[ty][j]
Run Code Online (Sandbox Code Playgroud)
我们遇到这样的情况:warp中的所有线程(具有线性增加tx值但具有相同ty值)正在共享内存中读取相同的位置.这是一种"最佳"访问模式 - 它不会出现任何银行冲突,并且会在最短的时间内得到服务.
对于这种情况:
tb[j][tx]
Run Code Online (Sandbox Code Playgroud)
我们有一种情况,warp中的相邻线程正在读取共享内存中的相邻位置.这也是一种"最优"的非银行冲突模式,并将在最短的时间内得到服务.
但是在你的MatrixMult_tiling_coalesced内核中,相应的乘法运算是:
res=res+ta[ty][j]*tb[tx][j];
Run Code Online (Sandbox Code Playgroud)
再次,在这种情况下:
ta[ty][j]
Run Code Online (Sandbox Code Playgroud)
我们有一个共享内存"广播"模式(从同一位置读取的warp中的所有线程),这是最佳和快速的.但在这种情况下:
tb[tx][j]
Run Code Online (Sandbox Code Playgroud)
您实际上已创建对共享内存的列式访问.这是共享内存最糟糕的访问模式,它将导致加载过程的32路序列化(或者在16x16线程块的情况下可能是16路序列化),并且性能肯定更差.为什么?请记住,对于给定的载荷,j在经纱上是恒定的,并且tx在经纱上线性增加.因此,假设j在特定的循环迭代中为1.warp 0中的线程将显示为:
tb[0][1], tb[1][1], tb[2][1], tb[3][1], ...
Run Code Online (Sandbox Code Playgroud)
并且这些位置都属于共享存储器的特定"列",即它们都属于同一共享存储体.这是共享内存的最坏情况模式.
为了完整起见,我声称MatrixMult_tiling_coalesced内核中的所有全局内存访问模式也已合并:
ta[ty][tx]=d_a[row*dim+TILE_WIDTH*i+tx];
tb[ty][tx]=d_b[bx*TILE_WIDTH*dim + TILE_WIDTH*i+ty*dim+tx];
...
d_c[row*dim+col]=res;
Run Code Online (Sandbox Code Playgroud)
因此,在两个内核实现之间,全局内存访问模式/活动/效率应该没有重大差异.
作为旁注,我认为这是一个学习练习.如果您对GPU上的高性能矩阵乘法感兴趣,我建议您考虑使用CUBLAS.
| 归档时间: |
|
| 查看次数: |
524 次 |
| 最近记录: |