BigDecimal摘要统计信息

the*_*heJ 6 bigdecimal java-8 java-stream

我有一个BigDecimals列表.

List<BigDecimal> amounts = new ArrayList<>()
Run Code Online (Sandbox Code Playgroud)

如何使用Java 8流获取上述列表的摘要统计信息,而不会丢失BigDecimal最多3-4个小数位的精度?

Hol*_*ger 12

我创建了这个答案BigDecimal的通用摘要统计收集器的专门化,它允许扩展它也支持求和,因此也计算平均值:

/**
 * Like {@code DoubleSummaryStatistics}, {@code IntSummaryStatistics}, and
 * {@code LongSummaryStatistics}, but for {@link BigDecimal}.
 */
public class BigDecimalSummaryStatistics implements Consumer<BigDecimal> {

    public static Collector<BigDecimal,?,BigDecimalSummaryStatistics> statistics() {
        return Collector.of(BigDecimalSummaryStatistics::new,
            BigDecimalSummaryStatistics::accept, BigDecimalSummaryStatistics::merge);
    }
    private BigDecimal sum = BigDecimal.ZERO, min, max;
    private long count;

    public void accept(BigDecimal t) {
        if(count == 0) {
            Objects.requireNonNull(t);
            count = 1;
            sum = t;
            min = t;
            max = t;
        }
        else {
            sum = sum.add(t);
            if(min.compareTo(t) > 0) min = t;
            if(max.compareTo(t) < 0) max = t;
            count++;
        }
    }
    public BigDecimalSummaryStatistics merge(BigDecimalSummaryStatistics s) {
        if(s.count > 0) {
            if(count == 0) {
                count = s.count;
                sum = s.sum;
                min = s.min;
                max = s.max;
            }
            else {
                sum = sum.add(s.sum);
                if(min.compareTo(s.min) > 0) min = s.min;
                if(max.compareTo(s.max) < 0) max = s.max;
                count += s.count;
            }
        }
        return this;
    }

    public long getCount() {
        return count;
    }

    public BigDecimal getSum()
    {
      return sum;
    }

    public BigDecimal getAverage(MathContext mc)
    {
      return count < 2? sum: sum.divide(BigDecimal.valueOf(count), mc);
    }

    public BigDecimal getMin() {
        return min;
    }

    public BigDecimal getMax() {
        return max;
    }

    @Override
    public String toString() {
        return count == 0? "empty": (count+" elements between "+min+" and "+max+", sum="+sum);
    }
}
Run Code Online (Sandbox Code Playgroud)

它可以DoubleSummaryStatistics像对应物一样使用

BigDecimalSummaryStatistics bds = list.stream().collect(BigDecimalSummaryStatistics.statistics());
Run Code Online (Sandbox Code Playgroud)

作为一个完整的例子:

List<BigDecimal> list = Arrays.asList(BigDecimal.ZERO, BigDecimal.valueOf(-2), BigDecimal.ONE);
BigDecimalSummaryStatistics bds = list.stream().collect(BigDecimalSummaryStatistics.statistics());
System.out.println(bds);
System.out.println("average: "+bds.getAverage(MathContext.DECIMAL128));
Run Code Online (Sandbox Code Playgroud)
3 elements between -2 and 1, sum=-1
average: -0.3333333333333333333333333333333333
Run Code Online (Sandbox Code Playgroud)


Don*_*aab 5

您可以将 Java Streams 与具有类的Eclipse Collections一起使用BigDecimalSummaryStatistics

List<BigDecimal> amounts = 
        Lists.mutable.with(BigDecimal.ONE, BigDecimal.TEN, BigDecimal.ZERO, BigDecimal.ONE);

BigDecimalSummaryStatistics stats =
        amounts.stream().collect(Collectors2.summarizingBigDecimal(each -> each));

Assert.assertEquals(BigDecimal.ZERO, stats.getMin());
Assert.assertEquals(BigDecimal.TEN, stats.getMax());
Assert.assertEquals(BigDecimal.valueOf(12L), stats.getSum());
Assert.assertEquals(BigDecimal.valueOf(3L), stats.getAverage());
Assert.assertEquals(4L, stats.getCount());
Run Code Online (Sandbox Code Playgroud)

注意:我是 Eclipse Collections 的提交者


Luk*_*der 1

如果您愿意使用第三方库(与 Java 8 流兼容),您可以使用jOO\xce\xbb,使用它您可以编写:

\n\n
Tuple5<\n    Long, \n    Optional<BigDecimal>, \n    Optional<BigDecimal>, \n    Optional<BigDecimal>, \n    Optional<BigDecimal>\n> tuple\namounts.stream()\n       .collect(Tuple.collectors(\n           Agg.sum(),\n           Agg.count(),\n           Agg.avg(),\n           Agg.<BigDecimal>min(),\n           Agg.<BigDecimal>max()\n       ));\n
Run Code Online (Sandbox Code Playgroud)\n\n

这不会导致精度损失,但可能比聚合双精度数慢得多

\n