ytr*_*ewq 7 python numpy initialization pytorch rnn
我想用np数组初始化RNN的参数。
在以下示例中,我想传递w给的参数rnn。我知道pytorch提供了许多初始化方法,例如Xavier,uniform等,但是是否可以通过传递numpy数组来初始化参数?
import numpy as np
import torch as nn
rng = np.random.RandomState(313)
w = rng.randn(input_size, hidden_size).astype(np.float32)
rnn = nn.RNN(input_size, hidden_size, num_layers)
Run Code Online (Sandbox Code Playgroud)
首先,让我们注意nn.RNN有多个权重变量,请参阅文档:
\n\n\n变量:
\n\n\n
\n- \n
weight_ih_l[k]\xe2\x80\x93 第 -th 层的可学习输入隐藏权重k,形状(hidden_size * input_size)为k = 0。否则,形状为(hidden_size * hidden_size)- \n
weight_hh_l[k]k\xe2\x80\x93形状为第 -th 层的可学习隐藏-隐藏权重(hidden_size * hidden_size)- \n
bias_ih_l[k]\xe2\x80\x93 第 - 层的可学习输入隐藏偏差k,形状(hidden_size)- \n
bias_hh_l[k]\xe2\x80\x93 第 层的可学习隐藏-隐藏偏差k,形状(hidden_size)
现在,每个变量(Parameter实例)都是您的属性nn.RNN。您可以通过两种方式访问它们并编辑它们,如下所示:
Parameter解决方案 1:通过名称(rnn.weight_hh_lK、rnn.weight_ih_lK等)访问所有 RNN属性:import torch\nfrom torch import nn\nimport numpy as np\n\ninput_size, hidden_size, num_layers = 3, 4, 2\nuse_bias = True\nrng = np.random.RandomState(313)\n\nrnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)\n\ndef set_nn_parameter_data(layer, parameter_name, new_data):\n param = getattr(layer, parameter_name)\n param.data = new_data\n\nfor i in range(num_layers):\n weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)\n weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)\n set_nn_parameter_data(rnn, "weight_hh_l{}".format(i), \n torch.from_numpy(weights_hh_layer_i))\n set_nn_parameter_data(rnn, "weight_ih_l{}".format(i), \n torch.from_numpy(weights_ih_layer_i))\n\n if use_bias:\n bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)\n bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)\n set_nn_parameter_data(rnn, "bias_hh_l{}".format(i), \n torch.from_numpy(bias_hh_layer_i))\n set_nn_parameter_data(rnn, "bias_ih_l{}".format(i), \n torch.from_numpy(bias_ih_layer_i))\nRun Code Online (Sandbox Code Playgroud)\n\nParameter解决方案2:通过列表属性访问所有RNN属性rnn.all_weights:import torch\nfrom torch import nn\nimport numpy as np\n\ninput_size, hidden_size, num_layers = 3, 4, 2\nuse_bias = True\nrng = np.random.RandomState(313)\n\nrnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)\n\nfor i in range(num_layers):\n weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)\n weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)\n rnn.all_weights[i][0].data = torch.from_numpy(weights_ih_layer_i)\n rnn.all_weights[i][1].data = torch.from_numpy(weights_hh_layer_i)\n\n if use_bias:\n bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)\n bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)\n rnn.all_weights[i][2].data = torch.from_numpy(bias_ih_layer_i)\n rnn.all_weights[i][3].data = torch.from_numpy(bias_hh_layer_i)\nRun Code Online (Sandbox Code Playgroud)\n