将行转换为pandas dataframe中的列

Ken*_*Kim 5 python dataframe pandas pandas-groupby

我想转换到低于Df1到Df2.
空值将用Nan填充.
Dfs下面是例子.
我的数据有几周,从1到8.
ID是100,000.只有第8周有所有ID,所以总行数为100,000.
+)我的解释非常糟糕.这里有更多解释.
我有Df3,其中有100,000个id,我想将Df3上的df1合并为df2格式.
ex)pd.merge(df3,df1,on ="id",how ="left") - >但格式化为df2

 Df1>
 wk, id, col1, col2  ...
 1    1   0.5  15  
 2    2   0.5  15  
 3    3   0.5  15  
 1    2   0.5  15  
 3    2   0.5  15  

 ------
 Df2>
 wk1, id, col1, col2, wk2, id, col1, col2, wk3,  id, col1, col2,...
 1    1   0.5  15      2    1   Nan   Nan   3    1   Nan   Nan
 1    2   0.5  15      2    2   0.5  15     3    2   0.5    15
 1    3   Nan  Nan     2    3   Nan   Nan   3    3   0.5    15
Run Code Online (Sandbox Code Playgroud)

jez*_*ael 4

使用:

#create dictionary for rename columns for correct sorting
d = dict(enumerate(df.columns))
d1 = {v:k for k, v in d.items()}

#first add missing values for each `wk` and `id`
df1 = df.set_index(['wk', 'id']).unstack().stack(dropna=False).reset_index()

#for each id create DataFrame, reshape by unstask and rename columns
df1 = (df1.groupby('id')
       .apply(lambda x: pd.DataFrame(x.values, columns=df.columns))
       .unstack()
       .reset_index(drop=True)
       .rename(columns=d1, level=0)
       .sort_index(axis=1, level=1)
       .rename(columns=d, level=0))

#convert values to integers if necessary
df1.loc[:, ['wk', 'id']] = df1.loc[:, ['wk', 'id']].astype(int)

#flatten MultiIndex in columns
df1.columns = ['{}_{}'.format(a, b) for a, b in df1.columns]
print (df1)

   wk_0  id_0  col1_0  col2_0  wk_1  id_1  col1_1  col2_1  wk_2  id_2  col1_2  \
0     1     1     0.5    15.0     2     1     NaN     NaN     3     1     NaN   
1     1     2     0.5    15.0     2     2     0.5    15.0     3     2     0.5   
2     1     3     NaN     NaN     2     3     NaN     NaN     3     3     0.5   

   col2_2  
0     NaN  
1    15.0  
2    15.0  
Run Code Online (Sandbox Code Playgroud)