如何将基于自定义图像的数据集加载到Pytorch中以用于CNN?

Aer*_*yes 3 machine-learning python-3.x conv-neural-network pytorch

我在互联网上搜索了数小时,以找到解决我问题的好方法。以下是一些相关的背景信息,可帮助您回答我的问题。

这是我的第一个深度学习项目,我不知道自己在做什么。我知道理论但不了解实际要素。

我正在使用的数据可以在以下链接的kaggle上找到:(https://www.kaggle.com/alxmamaev/flowers-recognition

我的目标是使用CNN根据数据集中提供的图像对花朵进行分类。

到目前为止,这是我尝试用来加载数据的一些示例代码,这是我的最佳尝试,但是正如我提到的那样,我一无所知,Pytorch文档并没有提供我可以理解的很多帮助。(https://pastebin.com/fNLVW1UW

    # Loads the images for use with the CNN.
def load_images(image_size=32, batch_size=64, root="../images"):
    transform = transforms.Compose([
        transforms.Resize(32),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    train_set = datasets.ImageFolder(root=root, train=True, transform=transform)
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2)

    return train_loader


# Defining variables for use with the CNN.
classes = ('daisy', 'dandelion', 'rose', 'sunflower', 'tulip')
train_loader_data = load_images()

# Training samples.
n_training_samples = 3394
train_sampler = SubsetRandomSampler(np.arange(n_training_samples, dtype=np.int64))

# Validation samples.
n_val_samples = 424
val_sampler = SubsetRandomSampler(np.arange(n_training_samples, n_training_samples + n_val_samples, dtype=np.int64))

# Test samples.
n_test_samples = 424
test_sampler = SubsetRandomSampler(np.arange(n_test_samples, dtype=np.int64))
Run Code Online (Sandbox Code Playgroud)

这是我的直接问题,我也需要答案:

  • 如何修复我的代码以80/10/10拆分的形式加载到数据集中进行训练/测试/验证?

  • 如何为已被/ images中的文件夹划分的这些图像创建所需的标签/类?

ced*_*hee 5

查看来自Kaggle的数据和您的代码,数据加载存在问题。

数据应该在每个类标签的不同文件夹中,以便PyTorch ImageFolder正确加载它。在您的情况下,由于所有训练数据都在同一文件夹中,因此PyTorch会将其作为一个训练集加载。您可以通过使用一个文件夹结构喜欢纠正这个- ,train/daisy,,train/dandelion 然后通过火车和测试文件夹到火车和测试分别。只需更改文件夹结构,就可以了。看一看官方文档,其中有一个类似的例子。test/daisytest/dandelionImageFoldertorchvision.datasets.Imagefolder


如您所说,这些图像已经被中的文件夹划分了/images。PyTorch ImageFolder假定图像的组织方式如下。但是,仅当您将所有图像用于火车集时,此文件夹结构才是正确的:

```
/images/daisy/100080576_f52e8ee070_n.jpg
/images/daisy/10140303196_b88d3d6cec.jpg
.
.
.
/images/dandelion/10043234166_e6dd915111_n.jpg
/images/dandelion/10200780773_c6051a7d71_n.jpg
```
Run Code Online (Sandbox Code Playgroud)

其中“雏菊”,“蒲公英”等是类别标签。

如果要根据情况将数据集分为训练和测试集,请使用正确的文件夹结构(请注意,我知道您希望将数据集分为训练,验证和测试集,但这并不重要,因为这只是一个实例来说明这个想法):

```
/images/train/daisy/100080576_f52e8ee070_n.jpg
/images/train/daisy/10140303196_b88d3d6cec.jpg
.
.
/images/train/dandelion/10043234166_e6dd915111_n.jpg
/images/train/dandelion/10200780773_c6051a7d71_n.jpg
.
.
/images/test/daisy/300080576_f52e8ee070_n.jpg
/images/test/daisy/95140303196_b88d3d6cec.jpg
.
.
/images/test/dandelion/32143234166_e6dd915111_n.jpg
/images/test/dandelion/65200780773_c6051a7d71_n.jpg
```
Run Code Online (Sandbox Code Playgroud)

然后,您可以参考以下有关如何编写数据加载器的完整代码示例:

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.utils.data as data
import torchvision
from torchvision import transforms

EPOCHS = 2
BATCH_SIZE = 10
LEARNING_RATE = 0.003
TRAIN_DATA_PATH = "./images/train/"
TEST_DATA_PATH = "./images/test/"
TRANSFORM_IMG = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(256),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225] )
    ])

train_data = torchvision.datasets.ImageFolder(root=TRAIN_DATA_PATH, transform=TRANSFORM_IMG)
train_data_loader = data.DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True,  num_workers=4)
test_data = torchvision.datasets.ImageFolder(root=TEST_DATA_PATH, transform=TRANSFORM_IMG)
test_data_loader  = data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4) 

class CNN(nn.Module):
    # omitted...

if __name__ == '__main__':

    print("Number of train samples: ", len(train_data))
    print("Number of test samples: ", len(test_data))
    print("Detected Classes are: ", train_data.class_to_idx) # classes are detected by folder structure

    model = CNN()    
    optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
    loss_func = nn.CrossEntropyLoss()    

    # Training and Testing
    for epoch in range(EPOCHS):        
        for step, (x, y) in enumerate(train_data_loader):
            b_x = Variable(x)   # batch x (image)
            b_y = Variable(y)   # batch y (target)
            output = model(b_x)[0]          
            loss = loss_func(output, b_y)   
            optimizer.zero_grad()           
            loss.backward()                 
            optimizer.step()

            if step % 50 == 0:
                test_x = Variable(test_data_loader)
                test_output, last_layer = model(test_x)
                pred_y = torch.max(test_output, 1)[1].data.squeeze()
                accuracy = sum(pred_y == test_y) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
Run Code Online (Sandbox Code Playgroud)