显示在bokeh的播种的图象

Tob*_*Sta 11 javascript python user-interface bokeh

我正在散景图中显示一张图片,并使用BoxSelectTool绘制一个矩形.

box_select = BoxSelectTool(callback=callback)

p2 = figure(x_range=(0,700), y_range=(0,500),plot_width=1100,plot_height=1100,tools=[box_select])
p2.image_url( url='url',
         x=1, y=1, w=700, h=500, anchor="bottom_left",source=im_src)

rect_source = ColumnDataSource(data=dict(x=[], y=[], width=[], height=[]))
callback = CustomJS(args=dict(rect_source=rect_source), code="""
    // get data source from Callback args
    var data = rect_source.data;

    /// get BoxSelectTool dimensions from cb_data parameter of Callback
    var geometry = cb_data['geometry'];

    /// calculate Rect attributes
    var width = geometry['x1'] - geometry['x0'];
    var height = geometry['y1'] - geometry['y0'];
    var x = geometry['x0'] + width/2;
    var y = geometry['y0'] + height/2;

    /// update data source with new Rect attributes
    data['x'].push(x);
    data['y'].push(y);
    data['width'].push(width);
    data['height'].push(height);

    rect_source.data = data;
    rect_source.change.emit();
'''
Run Code Online (Sandbox Code Playgroud)

现在我想在绘制矩形后,在不单击按钮或任何内容的情况下将图像区域显示为以不同的较小图形裁剪:

d2 = figure(x_range=(0,200), y_range=(0,100),plot_width=200,plot_height=100)
d2.image( image='image',
         x=1, y=1, dw=100, dh=100, source=img)

img = ColumnDataSource( data=dict(image=[]))
Run Code Online (Sandbox Code Playgroud)

所以我在JS中需要这样的东西:

tmp_im = cv2.imread('static/' + str(im_nr) + '.jpg')
tmp_im = tmp_im[geometry['y0']:geometry['y1'],geometry['x0']:geometry['x1']]
tmp_im = cv2.cvtColor(tmp_im, cv2.COLOR_BGR2GRAY)
img.data = dict(image=[tmp_im])
Run Code Online (Sandbox Code Playgroud)

我怎么能在JS + bokeh中做到这一点?

mdk*_*mdk 1

我建议使用该模块holoviews(pyviz 生态系统的一部分)来完成此任务,它提供了对 bokeh 的高级访问。

Holoviews提供所谓的streams,它可以与 一起使用,DynamicMaps根据流的(变化的)值生成动态图形。

该模块panel(也是 pyviz 生态系统的一部分)可用于定义可视化布局。

import numpy as np
import holoviews as hv
from holoviews import opts
from holoviews.streams import BoundsXY
import panel as pn

pn.extension() # loading the panel extension for use with notebook
opts.defaults(opts.Image(tools=['box_select'])) # making sure, that box_select is available

minval, maxval = 0, 200

# x-y data
ls = np.linspace(minval, 10, maxval)
xx, yy = np.meshgrid(ls, ls)
# z-data, e.g. intensity
zz = xx*yy

# min and max, later used to recalibrate the colormapping
zzmin = zz.min()
zzmax = zz.max() 

bounds=(0,0, 1,1) # bounds used for the image
im = hv.Image(zz, bounds=bounds)

# stream, xy-data are provided by the box_select-tool
# As start values the same bounds as for the image are used.
box = BoundsXY(bounds=bounds) 

# The box-stream is used to draw a rectangle dynamically
# based on the current selection using the box_select-tool.
rect = hv.DynamicMap(
    lambda bounds: hv.Bounds(bounds),
    streams=[box])

# The box-stream is used to draw an image dynamically
# based on the current selection using the box_select-tool.
im_select = hv.DynamicMap(
    lambda bounds: im[bounds[0]:bounds[2],bounds[1]:bounds[3]],
    streams=[box])

# Arranging the layout.
# With redim.range we make sure the colormapping uses the original min- and max-values as in 'im',
# and not the min- and max-values from 'im_select'.
layout = pn.Row(im * rect \
                +\
                im_select.redim.range(z=(zzmin, zzmax))) 
layout.app()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述