错误:`data` 和 `reference` 应该是具有相同水平的因素

Dis*_*tty 5 r classification machine-learning

尝试使用 RandomForest 预测模型的准确性,但遇到以下错误。
错误:datareference应该是水平相同的因素。

这是以下代码

rfModel <- randomForest(Churn ~., data = training)
print(rfModel)
pred_rf <- predict(rfModel, testing)
caret::confusionMatrix(pred_rf, testing$Churn)
testing$Churn
Run Code Online (Sandbox Code Playgroud)

训练和测试数据按 7:3 的比例分割

运行代码时也收到以下警告

Warning messages:
1: In get(results[[i]], pos = which(search() == packages[[i]])) :
  restarting interrupted promise evaluation
2: In get(results[[i]], pos = which(search() == packages[[i]])) :
  internal error -3 in R_decompress1
Run Code Online (Sandbox Code Playgroud)

测试数据结构

str(testing)
'data.frame':   999 obs. of  18 variables:
 $ account_length        : int  84 75 147 141 65 62 85 93 76 73 ...
 $ International.plan    : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 1 1 1 1 1 ...
 $ Voice.mail.plan       : Factor w/ 2 levels "No","Yes": 1 1 1 2 1 1 2 1 2 1 ...
 $ Number.vmail.messages : int  0 0 0 37 0 0 27 0 33 0 ...
 $ Total.day.minutes     : num  299 167 157 259 129 ...
 $ Total.day.calls       : int  71 113 79 84 137 70 139 114 66 90 ...
 $ Total.day.charge      : num  50.9 28.3 26.7 44 21.9 ...
 $ Total.eve.minutes     : num  61.9 148.3 103.1 222 228.5 ...
 $ Total.eve.calls       : int  88 122 94 111 83 76 90 111 65 88 ...
 $ Total.eve.charge      : num  5.26 12.61 8.76 18.87 19.42 ...
 $ Total.night.minutes   : num  197 187 212 326 209 ...
 $ Total.night.calls     : int  89 121 96 97 111 99 75 121 108 74 ...
 $ Total.night.charge    : num  8.86 8.41 9.53 14.69 9.4 ...
 $ Total.intl.minutes    : num  6.6 10.1 7.1 11.2 12.7 13.1 13.8 8.1 10 13 ...
 $ Total.intl.calls      : int  7 3 6 5 6 6 4 3 5 2 ...
 $ Total.intl.charge     : num  1.78 2.73 1.92 3.02 3.43 3.54 3.73 2.19 2.7 3.51 ...
 $ Customer.service.calls: int  2 3 0 0 4 4 1 3 1 1 ...
 $ Churn                 : chr  "0" "0" "0" "0" ...
Run Code Online (Sandbox Code Playgroud)

训练集结构相同,有2334个观察

pred_rf 的结构

 str(pred_rf)
 Factor w/ 2 levels "FALSE","TRUE": 1 1 1 1 2 2 1 1 1 1 ...
 - attr(*, "names")= chr [1:999] "4" "5" "8" "10" ...
Run Code Online (Sandbox Code Playgroud)

请帮帮我。

oax*_*att 3

好吧,我刚刚遇到了同样的问题并解决了。

看看你的str(testing),注意你的流失不是一个因素,而是一个因素

首先,您需要将流失率设置为一个因素,

Churn <- as.factor(testing$Churn)
Run Code Online (Sandbox Code Playgroud)

再次检查一下,str(testing)看看它确实发生了变化。

现在您可以使用:

test_predictions = predict(rf_model, testing_set)
test_predictions

conf_matrix = confusionMatrix(test_predictions, Churn)
conf_matrix
Run Code Online (Sandbox Code Playgroud)

请参阅:https ://community.rstudio.com/t/how-to-deal-with-rlang-errors/27248