JAG*_*024 5 python plot group-by dataframe pandas
我想在python中创建一个条形图,其中包含多个x类别,数据计数为"是"或"否".我已经开始使用一些代码,但我相信我正在以一种缓慢的方式获得我想要的解决方案.我可以使用seaborn,Matplotlib或pandas但不是 Bokeh 的解决方案,因为我想制作可扩展的出版品质数字.
最终我想要的是:
这是我正在使用的数据集:
import pandas as pd
data = [{'ship': 'Yes','canoe': 'Yes', 'cruise': 'Yes', 'kayak': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Red'},{'ship': 'No', 'cruise': 'Yes', 'kayak': 'No','canoe': 'Yes','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Red'}]
df = pd.DataFrame(data)
Run Code Online (Sandbox Code Playgroud)
这是我开始的:
print(df['color'].value_counts())
red = 4 # there must be a better way to code this rather than manually. Perhaps using len()?
green = 4
# get count per type
ca = df['canoe'].value_counts()
cr = df['cruise'].value_counts()
ka = df['kayak'].value_counts()
sh = df['ship'].value_counts()
print(ca, cr, ka, sh)
# group by color
cac = df.groupby(['canoe','color'])
crc = df.groupby(['cruise','color'])
kac = df.groupby(['kayak','color'])
shc = df.groupby(['ship','color'])
# make plots
cac2 = cac['color'].value_counts().unstack()
cac2.plot(kind='bar', title = 'Canoe by color')
Run Code Online (Sandbox Code Playgroud)
但实际上我想要的是在一个图上的所有x类别,仅显示"是"响应的结果,并将其视为"是"而不仅仅是计数的比例.救命?
咱们试试吧。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from itertools import groupby
data = [{'ship': 'Yes','canoe': 'Yes', 'cruise': 'Yes', 'kayak': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'No','canoe': 'No','color': 'Red'},{'ship': 'Yes', 'cruise': 'Yes', 'kayak': 'Yes','canoe': 'No','color': 'Red'},{'ship': 'No', 'cruise': 'Yes', 'kayak': 'No','canoe': 'Yes','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Green'},{'ship': 'No', 'cruise': 'No', 'kayak': 'No','canoe': 'No','color': 'Red'}]
df = pd.DataFrame(data)
df1 = df.replace(["Yes","No"],[1,0]).groupby("color").mean().stack().rename('% Yes').to_frame()
def add_line(ax, xpos, ypos):
line = plt.Line2D([xpos, xpos], [ypos + .1, ypos],
transform=ax.transAxes, color='gray')
line.set_clip_on(False)
ax.add_line(line)
def label_len(my_index,level):
labels = my_index.get_level_values(level)
return [(k, sum(1 for i in g)) for k,g in groupby(labels)]
def label_group_bar_table(ax, df):
ypos = -.1
scale = 1./df.index.size
for level in range(df.index.nlevels)[::-1]:
pos = 0
for label, rpos in label_len(df.index,level):
lxpos = (pos + .5 * rpos)*scale
ax.text(lxpos, ypos, label, ha='center', transform=ax.transAxes)
add_line(ax, pos*scale, ypos)
pos += rpos
add_line(ax, pos*scale , ypos)
ypos -= .1
colorlist = ['green','red']
cp = sns.color_palette(colorlist)
ax = sns.barplot(x=df1.index, y='% Yes', hue = df1.index.get_level_values(0), data=df1, palette=cp)
#Below 2 lines remove default labels
ax.set_xticklabels('')
ax.set_xlabel('')
label_group_bar_table(ax, df1)
Run Code Online (Sandbox Code Playgroud)
输出:
| 归档时间: |
|
| 查看次数: |
1005 次 |
| 最近记录: |