我正在尝试使用spark-jdbc在postgres db上读取表。为此,我想出了以下代码:
object PartitionRetrieval {
var conf = new SparkConf().setAppName("Spark-JDBC").set("spark.executor.heartbeatInterval","120s").set("spark.network.timeout","12000s").set("spark.default.parallelism", "20")
val log = LogManager.getLogger("Spark-JDBC Program")
Logger.getLogger("org").setLevel(Level.ERROR)
val conFile = "/home/myuser/ReconTest/inputdir/testconnection.properties"
val properties = new Properties()
properties.load(new FileInputStream(conFile))
val connectionUrl = properties.getProperty("gpDevUrl")
val devUserName = properties.getProperty("devUserName")
val devPassword = properties.getProperty("devPassword")
val driverClass = properties.getProperty("gpDriverClass")
val tableName = "base.ledgers"
try {
Class.forName(driverClass).newInstance()
} catch {
case cnf: ClassNotFoundException =>
log.error("Driver class: " + driverClass + " not found")
System.exit(1)
case e: Exception =>
log.error("Exception: " + e.printStackTrace())
System.exit(1)
}
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().config(conf).master("yarn").enableHiveSupport().getOrCreate()
import spark.implicits._
val gpTable = spark.read.format("jdbc").option("url", connectionUrl).option("dbtable",tableName).option("user",devUserName).option("password",devPassword).load()
val rc = gpTable.filter(gpTable("source_system_name")==="ORACLE" && gpTable("period_year")==="2017").count()
println("gpTable Count: " + rc)
}
}
Run Code Online (Sandbox Code Playgroud)
现在,我正在获取行数,只是为了查看连接是成功还是失败。它是一个巨大的表,并且获取我所了解的计数的速度较慢,因为没有为应该进行数据分区的分区号和列名提供任何参数。
在很多地方,我看到jdbc对象是通过以下方式创建的:
val gpTable2 = spark.read.jdbc(connectionUrl, tableName, connectionProperties)
Run Code Online (Sandbox Code Playgroud)
并且我使用创建了另一种格式的文件options。当使用'options'形成jdbc连接时,我无法理解如何给numPartitions分区列名称,我希望在该分区列名称上对数据进行分区:val gpTable = spark.read.format("jdbc").option("url", connectionUrl).option("dbtable",tableName).option("user",devUserName).option("password",devPassword).load()
谁能让我知道
如何将参数:添加numPartitions, lowerBound, upperBound
到以这种方式编写的jdbc对象中:
val gpTable = spark.read.format(“ jdbc”)。option(“ url”,connectionUrl).option(“ dbtable”,tableName).option(“ user”,devUserName).option(“ password”,devPassword)。加载()
如何只添加columnname和numPartition因为我想获取所有从今年行:2017年,我不希望被挑行的范围(下界,上界)
小智 5
这些选项numPartitions, lowerBound, upperBound and PartitionColumn控制并行读入火花。您需要PartitionColumn的整数列。如果表中没有合适的列,则可以将其ROW_NUMBER用作分区列。
试试看
val rowCount = spark.read.format("jdbc").option("url", connectionUrl)
.option("dbtable","(select count(*) AS count * from tableName where source_system_name = "ORACLE" AND "period_year = "2017")")
.option("user",devUserName)
.option("password",devPassword)
.load()
.collect()
.map(row => row.getAs[Int]("count")).head
Run Code Online (Sandbox Code Playgroud)
我们获得了所提供谓词可以用作upperBount的返回行数。
val gpTable = spark.read.format("jdbc").option("url", connectionUrl)
.option("dbtable","(select ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS RNO, * from tableName source_system_name = "ORACLE" AND "period_year = "2017")")
.option("user",devUserName)
.option("password",devPassword)
.option("numPartitions", 10)
.option("partitionColumn", "RNO")
.option("lowerBound", 1)
.option("upperBound", rowCount)
.load()
Run Code Online (Sandbox Code Playgroud)
numPartitions取决于与Postgres DB的并行连接数。您可以在读取数据库时根据所需的并行度进行调整。
| 归档时间: |
|
| 查看次数: |
1933 次 |
| 最近记录: |