kpu*_*hko 5 random r dplyr apache-spark sparklyr
我在spark数据框中有5亿行。我对sample_n
from 感兴趣,dplyr
因为它将允许我明确指定所需的样本量。如果要使用sparklyr::sdf_sample()
,我首先必须计算sdf_nrow()
,然后创建指定的数据分数sample_size / nrow
,然后将该分数传递给sdf_sample
。这没什么大不了的,但是sdf_nrow()
要花一些时间才能完成。
因此,dplyr::sample_n()
直接使用将是理想的选择。但是,经过一些测试,它看起来并不是sample_n()
随机的。实际上,结果与head()
!相同!如果函数不是随机抽样行,而是返回第一n
行,那将是一个主要问题。
有人可以确认吗?是sdf_sample()
我最好的选择吗?
# install.packages("gapminder")
library(gapminder)
library(sparklyr)
library(purrr)
sc <- spark_connect(master = "yarn-client")
spark_data <- sdf_import(gapminder, sc, "gapminder")
> # Appears to be random
> spark_data %>% sdf_sample(fraction = 0.20, replace = FALSE) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 58.83397
> spark_data %>% sdf_sample(fraction = 0.20, replace = FALSE) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 60.31693
> spark_data %>% sdf_sample(fraction = 0.20, replace = FALSE) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 59.38692
>
>
> # Appears to be random
> spark_data %>% sample_frac(0.20) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 60.48903
> spark_data %>% sample_frac(0.20) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 59.44187
> spark_data %>% sample_frac(0.20) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 59.27986
>
>
> # Does not appear to be random
> spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 57.78434
> spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 57.78434
> spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp))
# Source: lazy query [?? x 1]
# Database: spark_connection
sample_mean
<dbl>
1 57.78434
>
>
>
> # === Test sample_n() ===
> sample_mean <- list()
>
> for(i in 1:20){
+
+ sample_mean[i] <- spark_data %>% sample_n(300) %>% summarise(sample_mean = mean(lifeExp)) %>% collect() %>% pull()
+
+ }
>
>
> sample_mean %>% flatten_dbl() %>% mean()
[1] 57.78434
> sample_mean %>% flatten_dbl() %>% sd()
[1] 0
>
>
> # === Test head() ===
> spark_data %>%
+ head(300) %>%
+ pull(lifeExp) %>%
+ mean()
[1] 57.78434
Run Code Online (Sandbox Code Playgroud)
它不是。如果您检查执行计划(此处optimizedPlan
定义的函数),您会发现它只是一个限制:
spark_data %>% sample_n(300) %>% optimizedPlan()
Run Code Online (Sandbox Code Playgroud)
spark_data %>% sample_n(300) %>% optimizedPlan()
Run Code Online (Sandbox Code Playgroud)
进一步证实了这一点show_query
:
spark_data %>% sample_n(300) %>% show_query()
Run Code Online (Sandbox Code Playgroud)
<jobj[168]>
org.apache.spark.sql.catalyst.plans.logical.GlobalLimit
GlobalLimit 300
+- LocalLimit 300
+- InMemoryRelation [country#151, continent#152, year#153, lifeExp#154, pop#155, gdpPercap#156], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas), `gapminder`
+- Scan ExistingRDD[country#151,continent#152,year#153,lifeExp#154,pop#155,gdpPercap#156]
Run Code Online (Sandbox Code Playgroud)
和可视化的执行计划:
最后,如果您检查Spark 源代码,您会发现这种情况是通过 simple 实现的LIMIT
:
spark_data %>% sample_n(300) %>% show_query()
Run Code Online (Sandbox Code Playgroud)
我相信这个语义是从 Hive 继承的,其中等效查询从每个输入 split 中获取 n 第一行。
实际上,获取精确大小的样本非常昂贵,除非绝对必要(与 large 相同LIMITS
),否则应避免使用。