mar*_*rin -1 python python-3.x pandas scikit-learn
我正在尝试进行聚类。我正在使用熊猫和 sklearn。
import pandas
import pprint
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score
from sklearn.feature_extraction.text import TfidfVectorizer
dataset = pandas.read_csv('text.csv', encoding='utf-8')
dataset_list = dataset.values.tolist()
vectors = TfidfVectorizer()
X = vectors.fit_transform(dataset_list)
clusters_number = 20
model = KMeans(n_clusters = clusters_number, init = 'k-means++', max_iter = 300, n_init = 1)
model.fit(X)
centers = model.cluster_centers_
labels = model.labels_
clusters = {}
for comment, label in zip(dataset_list, labels):
print ('Comment:', comment)
print ('Label:', label)
try:
clusters[str(label)].append(comment)
except:
clusters[str(label)] = [comment]
pprint.pprint(clusters)
Run Code Online (Sandbox Code Playgroud)
但是我有以下错误,即使我从未使用过lower():
File "clustering.py", line 19, in <module>
X = vetorizer.fit_transform(dataset_list)
File "/usr/lib/python3/dist-packages/sklearn/feature_extraction/text.py", line 1381, in fit_transform
X = super(TfidfVectorizer, self).fit_transform(raw_documents)
File "/usr/lib/python3/dist-packages/sklearn/feature_extraction/text.py", line 869, in fit_transform
self.fixed_vocabulary_)
File "/usr/lib/python3/dist-packages/sklearn/feature_extraction/text.py", line 792, in _count_vocab
for feature in analyze(doc):
File "/usr/lib/python3/dist-packages/sklearn/feature_extraction/text.py", line 266, in <lambda>
tokenize(preprocess(self.decode(doc))), stop_words)
File "/usr/lib/python3/dist-packages/sklearn/feature_extraction/text.py", line 232, in <lambda>
return lambda x: strip_accents(x.lower())
AttributeError: 'list' object has no attribute 'lower'
Run Code Online (Sandbox Code Playgroud)
我不明白,我的文本 (text.csv) 已经是小写了。我从来没有打电话给lower()
数据:
你好想取消订单谢谢确认
你好想取消今天的订单 store house world
尺寸床不兼容想知道如何通过取消退款今天亲切发送
你好,可以亲切地取消订单
你好想取消订单申请退款
你好想取消这个订单可以亲切的指示过程
你好看到日期交货想取消订单谢谢
你好想取消匹配订单好交货n°111111
你好想取消这个订单
你好订购产品商店取消行为双倍预付款衷心感谢
你好希望取消订单谢谢你退款问候
您好,可以取消订单,请提前致谢
错误在这一行:
dataset_list = dataset.values.tolist()
Run Code Online (Sandbox Code Playgroud)
你看,dataset是一个pandas DataFrame,所以当你这样做时dataset.values,它会被转换成一个形状为 (n_rows, 1) 的二维数据集(即使列数是 1)。然后调用tolist()它会得到一个列表列表,如下所示:
print(dataset_list)
[[hello wish to cancel order thank you confirmation],
[hello would like to cancel order made today store house world],
[dimensions bed not compatible would like to know how to pass cancellation refund send today cordially]
...
...
...]]
Run Code Online (Sandbox Code Playgroud)
如您所见,这里有两个方括号。
现在TfidfVectorizer只需要一个句子列表,而不是列表列表,因此会出现错误(因为TfidfVectorizer假设内部数据是句子,但这里是一个列表)。
所以你只需要这样做:
# Use ravel to convert 2-d to 1-d array
dataset_list = dataset.values.ravel().tolist()
Run Code Online (Sandbox Code Playgroud)
或者
# Replace `column_name` with your actual column header,
# which converts DataFrame to Series
dataset_list = dataset['column_name'].values).tolist()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2157 次 |
| 最近记录: |