Sli*_*ind 5 nlp nltk data-extraction python-3.x spacy
我有一个文本文件,其中包含如下所示的行:
Electronically signed : Wes Scott, M.D.; Jun 26 2010 11:10AM CST
The patient was referred by Dr. Jacob Austin.
Electronically signed by Robert Clowson, M.D.; Janury 15 2015 11:13AM CST
Electronically signed by Dr. John Douglas, M.D.; Jun 16 2017 11:13AM CST
The patient was referred by
Dr. Jayden Green Olivia.
Run Code Online (Sandbox Code Playgroud)
我想使用 Spacy 提取所有名称。我正在使用 Spacy 的词性标记和实体识别,但无法获得成功。我可以知道它是如何做到的吗?任何帮助将是可观的
我正在以这种方式使用一些代码:
import spacy
nlp = spacy.load('en')
document_string= " Electronically signed by stupid: Dr. John Douglas, M.D.;
Jun 13 2018 11:13AM CST"
doc = nlp(document_string)
for sentence in doc.ents:
print(sentence, sentence.label_)
Run Code Online (Sandbox Code Playgroud)
所有模型的问题在于它们没有 100% 的准确度,甚至使用更大的模型也无助于识别日期。以下是 NER 模型的准确度值(F 分数、精确度、召回率)——它们都在 86% 左右。
\n\ndocument_string = """ \nElectronically signed : Wes Scott, M.D.; Jun 26 2010 11:10AM CST \n The patient was referred by Dr. Jacob Austin. \nElectronically signed by Robert Clowson, M.D.; Janury 15 2015 11:13AM CST \nElectronically signed by Dr. John Douglas, M.D.; Jun 16 2017 11:13AM CST \nThe patient was referred by \nDr. Jayden Green Olivia. \n""" \n
Run Code Online (Sandbox Code Playgroud)\n\n对于小模型,两个日期项被标记为“PERSON”:
\n\nimport spacy \n\nnlp = spacy.load(\'en\') \nsents = nlp(document_string) \n [ee for ee in sents.ents if ee.label_ == \'PERSON\'] \n# Out:\n# [Wes Scott,\n# Jun 26,\n# Jacob Austin,\n# Robert Clowson,\n# John Douglas,\n# Jun 16 2017,\n# Jayden Green Olivia]\n
Run Code Online (Sandbox Code Playgroud)\n\n对于较大的模型,en_core_web_md
结果在精度方面甚至更差,因为存在三个错误分类的实体。
nlp = spacy.load(\'en_core_web_md\') \nsents = nlp(document_string) \n# Out:\n#[Wes Scott,\n# Jun 26,\n# Jacob Austin,\n# Robert Clowson,\n# Janury,\n# John Douglas,\n# Jun 16 2017,\n# Jayden Green Olivia]\n
Run Code Online (Sandbox Code Playgroud)\n\n我还尝试了其他模型(xx_ent_wiki_sm
,en_core_web_md
),但它们也没有带来任何改进。
在这个小例子中,不仅文档似乎具有清晰的结构,而且错误分类的实体都是日期。那么为什么不将初始模型与基于规则的组件结合起来呢?
\n\n好消息是 Spacy 中:
\n\n\n\n\n可以通过多种方式组合统计和基于规则的组件。基于规则的组件可用于提高\n统计模型的准确性
\n
(来自https://spacy.io/usage/rule-based-matching#models-rules)
\n\n因此,通过遵循示例并使用dateparser库(人类可读日期的解析器),我已经组合了一个基于规则的组件,该组件在此示例中运行良好:
\n\nfrom spacy.tokens import Span\nimport dateparser\n\ndef expand_person_entities(doc):\n new_ents = []\n for ent in doc.ents:\n # Only check for title if it\'s a person and not the first token\n if ent.label_ == "PERSON":\n if ent.start != 0:\n # if person preceded by title, include title in entity\n prev_token = doc[ent.start - 1]\n if prev_token.text in ("Dr", "Dr.", "Mr", "Mr.", "Ms", "Ms."):\n new_ent = Span(doc, ent.start - 1, ent.end, label=ent.label)\n new_ents.append(new_ent)\n else:\n # if entity can be parsed as a date, it\'s not a person\n if dateparser.parse(ent.text) is None:\n new_ents.append(ent) \n else:\n new_ents.append(ent)\n doc.ents = new_ents\n return doc\n\n# Add the component after the named entity recognizer\n# nlp.remove_pipe(\'expand_person_entities\')\nnlp.add_pipe(expand_person_entities, after=\'ner\')\n\ndoc = nlp(document_string)\n[(ent.text, ent.label_) for ent in doc.ents if ent.label_==\'PERSON\']\n# Out:\n# [(\xe2\x80\x98Wes Scott\', \'PERSON\'),\n# (\'Dr. Jacob Austin\', \'PERSON\'),\n# (\'Robert Clowson\', \'PERSON\'),\n# (\'Dr. John Douglas\', \'PERSON\'),\n# (\'Dr. Jayden Green Olivia\', \'PERSON\')]\n
Run Code Online (Sandbox Code Playgroud)\n
尝试这个:
import spacy
en = spacy.load('en')
sents = en(open('input.txt').read())
people = [ee for ee in sents.ents if ee.label_ == 'PERSON']
Run Code Online (Sandbox Code Playgroud)