如何在 Dask.Distributed 中将任务分配给特定工作人员

Skl*_*vit 5 dask-distributed

我对使用 Dask Distributed 作为任务执行器很感兴趣。在 Celery 中,可以将任务分配给特定的工作人员。如何使用 Dask 分布式?

Skl*_*vit 6

有 2 个选项:

  1. 按名称或主机或 IP 指定工作人员(但仅限肯定声明):

    dask-worker scheduler_address:8786 --name worker_1
    
    Run Code Online (Sandbox Code Playgroud)

    然后是选项之一:

    client.map(func, sequence, workers='worker_1')
    client.map(func, sequence, workers=['192.168.1.100', '192.168.1.100:8989', 'alice', 'alice:8989'])
    client.submit(f, x, workers='127.0.0.1')
    client.submit(f, x, workers='127.0.0.1:55852')
    client.submit(f, x, workers=['192.168.1.101', '192.168.1.100'])
    future = client.compute(z, workers={z: '127.0.0.1',
                                    x: '192.168.0.1:9999'})
    future = client.compute(z, workers={(x, y): ['192.168.1.100', '192.168.1.101:9999']})
    
    Run Code Online (Sandbox Code Playgroud)
  2. 使用资源概念。您可以为工作人员指定可用资源,例如:

    dask-worker scheduler:8786 --resources "CAN_PROCESS_QUEUE_ALICE=2"
    
    Run Code Online (Sandbox Code Playgroud)

    并指定所需的资源,例如

    client.submit(aggregate, processed, resources={'CAN_PROCESS_QUEUE_ALICE': 1})
    
    Run Code Online (Sandbox Code Playgroud)

    或者

    z = some_dask_object.map_parititons(func)
    z.compute(resources={tuple(y.__dask_keys__()): {'CAN_PROCESS_QUEUE_ALICE': 1})
    
    Run Code Online (Sandbox Code Playgroud)