我对使用 Dask Distributed 作为任务执行器很感兴趣。在 Celery 中,可以将任务分配给特定的工作人员。如何使用 Dask 分布式?
有 2 个选项:
按名称或主机或 IP 指定工作人员(但仅限肯定声明):
dask-worker scheduler_address:8786 --name worker_1
Run Code Online (Sandbox Code Playgroud)
然后是选项之一:
client.map(func, sequence, workers='worker_1')
client.map(func, sequence, workers=['192.168.1.100', '192.168.1.100:8989', 'alice', 'alice:8989'])
client.submit(f, x, workers='127.0.0.1')
client.submit(f, x, workers='127.0.0.1:55852')
client.submit(f, x, workers=['192.168.1.101', '192.168.1.100'])
future = client.compute(z, workers={z: '127.0.0.1',
x: '192.168.0.1:9999'})
future = client.compute(z, workers={(x, y): ['192.168.1.100', '192.168.1.101:9999']})
Run Code Online (Sandbox Code Playgroud)使用资源概念。您可以为工作人员指定可用资源,例如:
dask-worker scheduler:8786 --resources "CAN_PROCESS_QUEUE_ALICE=2"
Run Code Online (Sandbox Code Playgroud)
并指定所需的资源,例如
client.submit(aggregate, processed, resources={'CAN_PROCESS_QUEUE_ALICE': 1})
Run Code Online (Sandbox Code Playgroud)
或者
z = some_dask_object.map_parititons(func)
z.compute(resources={tuple(y.__dask_keys__()): {'CAN_PROCESS_QUEUE_ALICE': 1})
Run Code Online (Sandbox Code Playgroud)| 归档时间: |
|
| 查看次数: |
1570 次 |
| 最近记录: |