mer*_*kle 5 machine-learning scikit-learn logistic-regression sklearn-pandas
我有一个评论数据集,其类别标签为正面/负面。我正在对该评论数据集应用逻辑回归。首先,我正在转换成词袋。这里sorted_data['Text']是评论,final_counts是一个稀疏矩阵
count_vect = CountVectorizer()
final_counts = count_vect.fit_transform(sorted_data['Text'].values)
standardized_data = StandardScaler(with_mean=False).fit_transform(final_counts)
Run Code Online (Sandbox Code Playgroud)
将数据集拆分为训练和测试
X_1, X_test, y_1, y_test = cross_validation.train_test_split(final_counts, labels, test_size=0.3, random_state=0)
X_tr, X_cv, y_tr, y_cv = cross_validation.train_test_split(X_1, y_1, test_size=0.3)
Run Code Online (Sandbox Code Playgroud)
我正在应用逻辑回归算法如下
optimal_lambda = 0.001000
log_reg_optimal = LogisticRegression(C=optimal_lambda)
# fitting the model
log_reg_optimal.fit(X_tr, y_tr)
# predict the response
pred = log_reg_optimal.predict(X_test)
# evaluate accuracy
acc = accuracy_score(y_test, pred) * 100
print('\nThe accuracy of the Logistic Regression for C = %f is %f%%' % (optimal_lambda, acc))
Run Code Online (Sandbox Code Playgroud)
我的体重是
weights = log_reg_optimal.coef_ . #<class 'numpy.ndarray'>
array([[-0.23729528, -0.16050616, -0.1382504 , ..., 0.27291847,
0.35857267, 0.41756443]])
(1, 38178) #shape of weights
Run Code Online (Sandbox Code Playgroud)
我想获得特征重要性,即;前 100 个具有高权重的特征。谁能告诉我如何获得它们?
mak*_*kis 10
调查“的一种方式影响”或“重要的线性分类模型给定的特征/参数”是考虑大小的的系数。
这是最基本的做法。其他用于查找特征重要性或参数影响的技术可以提供更多洞察,例如使用p 值、引导分数、各种“判别指数”等。
在这里,你已经标准化了数据,所以直接使用这个:
weights = log_reg_optimal.coef_
abs_weights = np.abs(weights)
print(abs_weights)
Run Code Online (Sandbox Code Playgroud)
如果您查看原始数据,weights那么负系数意味着相应特征的较高值会将分类推向负类。
编辑 1
显示如何获取特征名称的示例:
import numpy as np
#features names
names_of_variables =np.array(['a','b','c','d'])
#create random weights and get the magnitude
weights = np.random.rand(4)
abs_weights = np.abs(weights)
#get the sorting indices
sorted_index = np.argsort(abs_weights)[::-1]
#check if the sorting indices are correct
print(abs_weights[sorted_index])
#get the index of the top-2 features
top_2 = sorted_index[:2]
#get the names of the top 2 most important features
print(names_of_variables[top_2])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
13353 次 |
| 最近记录: |