Wit*_*upś 5 kotlin kotlin-coroutines
我正在尝试执行以下代码:
val jobs = listOf(...)
return runBlocking(CommonPool) {
val executed = jobs.map {
async { it.execute() }
}.toTypedArray()
awaitAll(*executed)
}
Run Code Online (Sandbox Code Playgroud)
jobs某些Suppliers 的列表在哪里-在同步世界中,这应该只创建例如int列表。一切正常,但问题是未使用主线程。YourKit的Bellow屏幕截图:

我想runBlocking这里是问题,但是还有其他方法可以收到相同的结果吗?使用Java并行流,它看起来要好得多,但是主线程仍未完全利用(任务是完全独立的)。
好吧,也许我告诉你的东西太少了。在观看Vankant Subramaniam的演讲后不久,我的问题就来了:https ://youtu.be/0hQvWIdwnw4 。我需要最高的性能,没有IO,没有Ui等。只有计算。只有请求,我需要使用所有可用资源。
我的一个想法是将Paralleizm设置为线程数+ 1,但是我认为这很愚蠢。
我使用 Java 8 并行流测试了该解决方案:
jobs.parallelStream().forEach { it.execute() }
Run Code Online (Sandbox Code Playgroud)
我发现 CPU 利用率可靠地达到 100%。作为参考,我使用了这个计算作业:
class MyJob {
fun execute(): Double {
val rnd = ThreadLocalRandom.current()
var d = 1.0
(1..rnd.nextInt(1_000_000)).forEach { _ ->
d *= 1 + rnd.nextDouble(0.0000001)
}
return d
}
}
Run Code Online (Sandbox Code Playgroud)
请注意,其持续时间从零到执行 100,000,000 次 FP 乘法所需的时间随机变化。
出于好奇,我还研究了您添加到问题中的代码作为适合您的解决方案。我发现它存在很多问题,例如:
我自己编写了一些代码,并添加了代码来对 Stream API 单行进行基准测试。这里是:
const val NUM_JOBS = 1000
val jobs = (0 until NUM_JOBS).map { MyJob() }
fun parallelStream(): Double =
jobs.parallelStream().map { it.execute() }.collect(summingDouble { it })
fun channels(): Double {
val resultChannel = Channel<Double>(UNLIMITED)
val mainComputeChannel = Channel<MyJob>()
val poolComputeChannels = (1..commonPool().parallelism).map { _ ->
GlobalScope.actor<MyJob>(Dispatchers.Default) {
for (job in channel) {
job.execute().also { resultChannel.send(it) }
}
}
}
val allComputeChannels = poolComputeChannels + mainComputeChannel
// Launch a coroutine that submits the jobs
GlobalScope.launch {
jobs.forEach { job ->
select {
allComputeChannels.forEach { chan ->
chan.onSend(job) {}
}
}
}
}
// Run the main loop which takes turns between running a job
// submitted to the main thread channel and receiving a result
return runBlocking {
var completedCount = 0
var sum = 0.0
while (completedCount < NUM_JOBS) {
select<Unit> {
mainComputeChannel.onReceive { job ->
job.execute().also { resultChannel.send(it) }
}
resultChannel.onReceive { result ->
sum += result
completedCount++
}
}
}
sum
}
}
fun main(args: Array<String>) {
measure("Parallel Stream", ::parallelStream)
measure("Channels", ::channels)
measure("Parallel Stream", ::parallelStream)
measure("Channels", ::channels)
}
fun measure(task: String, measuredCode: () -> Double) {
val block = { print(measuredCode().toString().substringBefore('.')) }
println("Warming up $task")
(1..20).forEach { _ -> block() }
println("\nMeasuring $task")
val average = (1..20).map { measureTimeMillis(block) }.average()
println("\n$task took $average ms")
}
Run Code Online (Sandbox Code Playgroud)
这是我的典型结果:
Parallel Stream took 396.85 ms
Channels took 398.1 ms
Run Code Online (Sandbox Code Playgroud)
结果相似,但一行代码仍然胜过 50 行代码:)
| 归档时间: |
|
| 查看次数: |
1520 次 |
| 最近记录: |