TensorFlow - 当损失达到定义值时停止训练

Jul*_*en 7 python keras tensorflow

我在这里使用第一个例子作为网络示例。

当损失达到固定值时如何停止训练?

例如,我想固定最多 3000 个 epoch,当损失低于 0.2 时训练就会停止。

我读了这个话题,但这不是我找到的解决方案。

我想在损失达到某个值时停止训练,而不是像此函数那样没有任何改进时停止训练前面主题中提出的

这是代码:

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)

model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
              optimizer=sgd,
              metrics=['accuracy'])

model.fit(x_train, y_train,
          epochs=3000,
          batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)  
Run Code Online (Sandbox Code Playgroud)

小智 7

如果您要切换到 TensorFlow 2.0,可以使用如下方法:

class haltCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
    if(logs.get('loss') <= 0.05):
        print("\n\n\nReached 0.05 loss value so cancelling training!\n\n\n")
        self.model.stop_training = True
Run Code Online (Sandbox Code Playgroud)

您只需要创建一个像这样的回调,然后将该回调添加到您的 model.fit 中,它就会变成这样:

model.fit(x_train, y_train,
      epochs=3000,
      batch_size=128,
      callbacks=['trainingStopCallback'])
Run Code Online (Sandbox Code Playgroud)

这样,只要低于 0.05(或定义时设置的任何值),拟合就会停止。

另外,由于您问这个问题已经很长时间了,但仍然没有与 TensorFlow 2.0 一起使用的实际答案,我将您的代码片段更新为 TensorFlow 2.0,以便每个人现在都可以轻松找到它并将其用于他们的新项目。

import tensorflow as tf

# Generate dummy data
import numpy as np


x_train = np.random.random((1000, 20))
y_train = tf.keras.utils.to_categorical(
    np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = tf.keras.utils.to_categorical(
    np.random.randint(10, size=(100, 1)), num_classes=10)

model = tf.keras.models.Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(tf.keras.layers.Dense(64, activation='relu', input_dim=20))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10, activation='softmax'))


class haltCallback(tf.keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs={}):
        if(logs.get('loss') <= 0.05):
            print("\n\n\nReached 0.05 loss value so cancelling training!\n\n\n")
            self.model.stop_training = True


trainingStopCallback = haltCallback()

sgd = tf.keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
              optimizer=sgd,
              metrics=['accuracy', 'loss'])

model.fit(x_train, y_train,
          epochs=3000,
          batch_size=128,
          callbacks=['trainingStopCallback'])
score = model.evaluate(x_test, y_test, batch_size=128)
Run Code Online (Sandbox Code Playgroud)


Veg*_*dKT 0

此处的文档:EarlyStopping

keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None)
Run Code Online (Sandbox Code Playgroud)