我有功能=> city这是分类数据,即字符串,但是使用硬编码代替硬编码replace()吗?
train['city'].unique()
Output: ['city_149', 'city_83', 'city_16', 'city_64', 'city_100', 'city_21',
'city_114', 'city_103', 'city_97', 'city_160', 'city_65',
'city_90', 'city_75', 'city_136', 'city_159', 'city_67', 'city_28',
'city_10', 'city_73', 'city_76', 'city_104', 'city_27', 'city_30',
'city_61', 'city_99', 'city_41', 'city_142', 'city_9', 'city_116',
'city_128', 'city_74', 'city_69', 'city_1', 'city_176', 'city_40',
'city_123', 'city_152', 'city_165', 'city_89', 'city_36', .......]
Run Code Online (Sandbox Code Playgroud)
我正在尝试的是:
train.replace(['city_149', 'city_83', 'city_16', 'city_64', 'city_100', 'city_21',
'city_114', 'city_103', 'city_97', 'city_160', 'city_65',
'city_90', 'city_75', 'city_136', 'city_159', 'city_67', 'city_28',
'city_10', 'city_73', 'city_76', 'city_104', 'city_27', 'city_30',
'city_61', 'city_99', 'city_41', 'city_142', 'city_9', 'city_116',
'city_128', 'city_74', 'city_69', 'city_1', 'city_176', 'city_40',
'city_123', 'city_152', 'city_165', 'city_89', 'city_36', .......], [1,2,3,4,5,6,7,8,9....], inplace=True)
Run Code Online (Sandbox Code Playgroud)
有没有更好的方法可以将数据转换为数值?因为唯一值的数量为123。所以我需要对1,2,3,4,... 123中的数字进行硬编码以进行转换。提出一些更好的方法将其转换为数值。
train['city'] = pd.factorize(train.city)[0]
Run Code Online (Sandbox Code Playgroud)
train['city'] = train['city'].astype('category').cat.codes
Run Code Online (Sandbox Code Playgroud)
例如:
>>> train
city
0 city_151
1 city_149
2 city_151
3 city_149
4 city_149
5 city_149
6 city_151
7 city_151
8 city_150
9 city_151
Run Code Online (Sandbox Code Playgroud)
factorize:
train['city'] = pd.factorize(train.city)[0]
>>> train
city
0 0
1 1
2 0
3 1
4 1
5 1
6 0
7 0
8 2
9 0
Run Code Online (Sandbox Code Playgroud)
或astype('category'):
train['city'] = train['city'].astype('category').cat.codes
>>> train
city
0 2
1 0
2 2
3 0
4 0
5 0
6 2
7 2
8 1
9 2
Run Code Online (Sandbox Code Playgroud)