Uch*_*ara 3 tensorflow tfrecord
我正在尝试将我的 Jpeg 图像集转换为 TFrecords。但是 TFrecord 文件占用的空间几乎是图像集的 5 倍。经过大量的谷歌搜索,我了解到当 JPEG 被写入 TFrecords 时,它们不再是 JPEG。但是,我还没有遇到针对此问题的可理解的代码解决方案。请告诉我应该在下面的代码中进行哪些更改才能将 JPEG 写入 Tfrecords。
def print_progress(count, total):
pct_complete = float(count) / total
msg = "\r- Progress: {0:.1%}".format(pct_complete)
sys.stdout.write(msg)
sys.stdout.flush()
def wrap_int64(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def wrap_bytes(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def convert(image_paths , labels, out_path):
# Args:
# image_paths List of file-paths for the images.
# labels Class-labels for the images.
# out_path File-path for the TFRecords output file.
print("Converting: " + out_path)
# Number of images. Used when printing the progress.
num_images = len(image_paths)
# Open a TFRecordWriter for the output-file.
with tf.python_io.TFRecordWriter(out_path) as writer:
# Iterate over all the image-paths and class-labels.
for i, (path, label) in enumerate(zip(image_paths, labels)):
# Print the percentage-progress.
print_progress(count=i, total=num_images-1)
# Load the image-file using matplotlib's imread function.
img = imread(path)
# Convert the image to raw bytes.
img_bytes = img.tostring()
# Create a dict with the data we want to save in the
# TFRecords file. You can add more relevant data here.
data = \
{
'image': wrap_bytes(img_bytes),
'label': wrap_int64(label)
}
# Wrap the data as TensorFlow Features.
feature = tf.train.Features(feature=data)
# Wrap again as a TensorFlow Example.
example = tf.train.Example(features=feature)
# Serialize the data.
serialized = example.SerializeToString()
# Write the serialized data to the TFRecords file.
writer.write(serialized)
Run Code Online (Sandbox Code Playgroud)
编辑:有人可以回答这个吗?!
我们可以使用内置open函数来获取字节,而不是将图像转换为数组并返回字节。这样,压缩后的图像就会被写入 TFRecord。
替换这两行
img = imread(path)
img_bytes = img.tostring()
Run Code Online (Sandbox Code Playgroud)
和
img_bytes = open(path,'rb').read()
Run Code Online (Sandbox Code Playgroud)
参考 :
https://github.com/tensorflow/tensorflow/issues/9675
| 归档时间: |
|
| 查看次数: |
1446 次 |
| 最近记录: |