我试图找出最快的方法来计算两个值在numpy列表中一个接一个地定位的时间.
例如:
list = [1, 5, 4, 1, 2, 4, 6, 7, 2, 1, 3, 3, 1, 2]
我想计算值1跟随值的次数2(但反之亦然)
在上面的例子中,答案应该是1因为1如下2只有一次.
我显然可以通过一个简单的for循环来达到答案,每次项目i相等1且item i-1等于时2,它会添加到计数器中,但我觉得必须有更快的方法来做到这一点,
谢谢
import numpy as np
mylist = [1, 5, 4, 1, 2, 4, 6, 7, 2, 1, 3, 3, 1, 2]
# Turn your list into a numpy array
myarray = np.array(mylist)
# find occurences where myarray is 2 and the following element is 2 minus 1
np.sum((myarray[:-1] == 2) & (np.diff(myarray) == -1))
Run Code Online (Sandbox Code Playgroud)
哪个回报 1
大阵列上的时间:
在一个小的列表中,迭代方法和numpy方法之间的时间差异将不明显.但是在大型阵列上,如下例所示,性能numpy要好得多.
import timeit
mylist = np.random.choice(range(0,9), 1000000)
def np_method(mylist = mylist):
return np.sum((mylist[:-1] == 2) & (np.diff(mylist) == -1))
def zip_loop(a = mylist):
return len( [1 for i,j in zip(a, a[1:]) if i == 2 and j == 1] )
def for_loop(list1 = mylist):
count=0
desired_num=2
follower_num=1
for i in range(len(list1)-1):
if list1[i]==desired_num:
if list1[i+1]==follower_num:
count+=1
return count
>>> timeit.timeit(np_method, number = 100) / 100
0.006748438189970329
>>> timeit.timeit(zip_loop, number = 100) / 100
0.3811768989200209
>>> timeit.timeit(for_loop, number = 100) / 100
0.3774999916599336
Run Code Online (Sandbox Code Playgroud)