sra*_*nga 2 python pandas scikit-learn
我想打乱数据框,将行集保持在一起。在一起的行数不是恒定的,但我有一列用相同的 Id 标记它们。
对于 EX:在下面的数据中,第一列是唯一标记,指定洗牌时哪些行需要放在一起。
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 46 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 4 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 39 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 10 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 7 -135.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 0 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 35 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 5 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 47 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 12 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 13 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 20 -201.00
2 56.00 1 0.83 2.16 3147890 3120000.00 1 201.00 0 -201.00 116.00 75.88 201.00 232.00 105.74 201.00 168.00 75.88 42 -201.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 46 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 4 -95.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 39 -46.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 10 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 7 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 0 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 35 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 5 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 47 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 12 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 13 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 20 -135.00
4 93.00 1 0.34 3.62 4121000 5340000.00 1 135.00 0 -135.00 78.00 120.53 135.00 10.00 2.67 135.00 313.00 120.53 42 -135.00
6 74.00 0 2.35 2.89 1680840 2940000.00 11 2758.00 0 -2758.00 296.00 74.46 261.00 176.00 75.84 304.00 304.00 74.46 46 -2730.00
6 74.00 0 2.35 2.89 1680840 2940000.00 11 2758.00 0 -2758.00 296.00 74.46 261.00 176.00 75.84 304.00 304.00 74.46 4 -2458.00
6 74.00 0 2.35 2.89 1680840 2940000.00 11 2758.00 0 -2758.00 296.00 74.46 261.00 176.00 75.84 304.00 304.00 74.46 39 -2758.00
6 74.00 0 2.35 2.89 1680840 2940000.00 11 2758.00 0 -2758.00 296.00 74.46 261.00 176.00 75.84 304.00 304.00 74.46 10 -2758.00
6 74.00 0 2.35 2.89 1680840 2940000.00 11 2758.00 0 -2758.00 296.00 74.46 261.00 176.00 75.84 304.00 304.00 74.46 7 -2554.00
6 74.00 0 2.35 2.89 1680840 2940000.00 11 2758.00 0 -2758.00 296.00 74.46 261.00 176.00 75.84 304.00 304.00 74.46 0 -2568.00
Run Code Online (Sandbox Code Playgroud)
np.random.choice您可以将此生成器与唯一的 col1 一起使用,pd.concat以重新组装“组”。
import numpy as np
pd.concat((df[df['col1'] == i] for i in np.random.choice(df['col1'].unique(),
df['col1'].nunique())))
Run Code Online (Sandbox Code Playgroud)
详细信息,首先使用 'col1' 作为列表获取唯一值unique,然后使用 从此列表中选择随机元素np.random.choice。使用该选择使用语法对生成器内的数据帧的部分(“组”)进行布尔选择for-in,最后,用于pd.concat将数据帧重新组装成随机组。
| 归档时间: |
|
| 查看次数: |
672 次 |
| 最近记录: |