Dat*_*Guy 23 python flask keras tensorflow
我正在部署keras模型并通过烧瓶api将测试数据发送到模型.我有两个文件:
第一:我的烧瓶应用:
# Let's startup the Flask application
app = Flask(__name__)
# Model reload from jSON:
print('Load model...')
json_file = open('models/model_temp.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
keras_model_loaded = model_from_json(loaded_model_json)
print('Model loaded...')
# Weights reloaded from .h5 inside the model
print('Load weights...')
keras_model_loaded.load_weights("models/Model_temp.h5")
print('Weights loaded...')
# URL that we'll use to make predictions using get and post
@app.route('/predict',methods=['GET','POST'])
def predict():
data = request.get_json(force=True)
predict_request = [data["month"],data["day"],data["hour"]]
predict_request = np.array(predict_request)
predict_request = predict_request.reshape(1,-1)
y_hat = keras_model_loaded.predict(predict_request, batch_size=1, verbose=1)
return jsonify({'prediction': str(y_hat)})
if __name__ == "__main__":
# Choose the port
port = int(os.environ.get('PORT', 9000))
# Run locally
app.run(host='127.0.0.1', port=port)
Run Code Online (Sandbox Code Playgroud)
第二:我用来发送json数据发送到api端点的文件:
response = rq.get('api url has been removed')
data=response.json()
currentDT = datetime.datetime.now()
Month = currentDT.month
Day = currentDT.day
Hour = currentDT.hour
url= "http://127.0.0.1:9000/predict"
post_data = json.dumps({'month': month, 'day': day, 'hour': hour,})
r = rq.post(url,post_data)
Run Code Online (Sandbox Code Playgroud)
我从Flask得到关于Tensorflow的回复:
ValueError:Tensor Tensor("dense_6/BiasAdd:0",shape =(?,1),dtype = float32)不是此图的元素.
我的keras模型是一个简单的6密集层模型,训练没有错误.
有任何想法吗?
Sat*_*jit 28
Flask使用多个线程.您遇到的问题是因为tensorflow模型未加载并在同一个线程中使用.一种解决方法是强制tensorflow使用gloabl默认图.
加载模型后添加此项
global graph
graph = tf.get_default_graph()
Run Code Online (Sandbox Code Playgroud)
在你的预测中
with graph.as_default():
y_hat = keras_model_loaded.predict(predict_request, batch_size=1, verbose=1)
Run Code Online (Sandbox Code Playgroud)
And*_*ouw 12
将您的keras模型包装到一个类中非常简单,并且该类可以跟踪它自己的图和会话。这样可以避免具有多个线程/进程/模型可能导致的问题,而这几乎可以肯定是导致问题的原因。尽管其他解决方案也可以使用,但这是目前为止最通用,可扩展并涵盖所有方面的解决方案。使用这个:
import os
from keras.models import model_from_json
from keras import backend as K
import tensorflow as tf
import logging
logger = logging.getLogger('root')
class NeuralNetwork:
def __init__(self):
self.session = tf.Session()
self.graph = tf.get_default_graph()
# the folder in which the model and weights are stored
self.model_folder = os.path.join(os.path.abspath("src"), "static")
self.model = None
# for some reason in a flask app the graph/session needs to be used in the init else it hangs on other threads
with self.graph.as_default():
with self.session.as_default():
logging.info("neural network initialised")
def load(self, file_name=None):
"""
:param file_name: [model_file_name, weights_file_name]
:return:
"""
with self.graph.as_default():
with self.session.as_default():
try:
model_name = file_name[0]
weights_name = file_name[1]
if model_name is not None:
# load the model
json_file_path = os.path.join(self.model_folder, model_name)
json_file = open(json_file_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
self.model = model_from_json(loaded_model_json)
if weights_name is not None:
# load the weights
weights_path = os.path.join(self.model_folder, weights_name)
self.model.load_weights(weights_path)
logging.info("Neural Network loaded: ")
logging.info('\t' + "Neural Network model: " + model_name)
logging.info('\t' + "Neural Network weights: " + weights_name)
return True
except Exception as e:
logging.exception(e)
return False
def predict(self, x):
with self.graph.as_default():
with self.session.as_default():
y = self.model.predict(x)
return y
Run Code Online (Sandbox Code Playgroud)
小智 5
在加载模型后添加model._make_predict_function()
`
# Model reload from jSON:
print('Load model...')
json_file = open('models/model_temp.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
keras_model_loaded = model_from_json(loaded_model_json)
print('Model loaded...')
# Weights reloaded from .h5 inside the model
print('Load weights...')
keras_model_loaded.load_weights("models/Model_temp.h5")
print('Weights loaded...')
keras_model_loaded._make_predict_function()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6751 次 |
| 最近记录: |