Jin*_*gai 2 python opencv computer-vision stereo-3d pose-estimation
如何从不同角度拍摄一个物体的两个图像,并根据另一个点在一个物体上绘制极线?
例如,我希望能够使用鼠标在左侧图片上选择一个点,用圆圈标记该点,然后在与标记点相对应的右侧图像上绘制一条极线。
我有 2 个 XML 文件,其中包含 3x3 相机矩阵和每张图片的 3x4 投影矩阵列表。相机矩阵为K。左图的投影矩阵为P_left。右图的投影矩阵是P_right。
我试过这种方法:
在左侧图像中选择一个像素坐标 (x,y)(通过鼠标点击)
计算p左图中的一个点K^-1 * (x,y,1)
Calulate伪逆矩阵P+的P_left(使用np.linalg.pinv)
计算右图e'的对极:P_right * (0,0,0,1)
计算反对称矩阵e'_skew的e'
计算基本矩阵F:e'_skew * P_right * P+
计算l'右图的极线:F * p
计算p'右图中的一个点:P_right * P+ * p
变换p'并l返回像素坐标
使用cv2.line通过p'和绘制一条线l
我几天前刚刚这样做了,它工作得很好。这是我使用的方法:
getCorners和calibrateCamera,您可以找到很多关于此的教程,但听起来您已经拥有此信息)stereoCalibrate()。它将所有相机和失真矩阵作为参数。您需要它来确定两个视野之间的相关性。你会得到几个矩阵,旋转矩阵 R、平移向量 T、基本矩阵 E 和基本矩阵 F。 getOptimalNewCameraMatrix和undistort(). 这将消除很多相机像差(它会给你更好的结果) computeCorrespondEpilines来计算线条并绘制它们。我将在下面包含一些代码,您可以在 Python 中试用。当我运行它时,我可以得到这样的图像(彩色点在另一个图像中绘制了它们对应的外线)
这是一些代码(Python 3.0)。它使用两个静态图像和静态点,但您可以轻松地用光标选择这些点。您还可以在此处参考有关校准和立体声校准的 OpenCV 文档。
import cv2
import numpy as np
# find object corners from chessboard pattern and create a correlation with image corners
def getCorners(images, chessboard_size, show=True):
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((chessboard_size[1] * chessboard_size[0], 3), np.float32)
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2)*3.88 # multiply by 3.88 for large chessboard squares
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
for image in images:
frame = cv2.imread(image)
# height, width, channels = frame.shape # get image parameters
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None) # Find the chess board corners
if ret: # if corners were found
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) # refine corners
imgpoints.append(corners2) # add to corner array
if show:
# Draw and display the corners
frame = cv2.drawChessboardCorners(frame, chessboard_size, corners2, ret)
cv2.imshow('frame', frame)
cv2.waitKey(100)
cv2.destroyAllWindows() # close open windows
return objpoints, imgpoints, gray.shape[::-1]
# perform undistortion on provided image
def undistort(image, mtx, dist):
img = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
image = os.path.splitext(image)[0]
h, w = img.shape[:2]
newcameramtx, _ = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
return dst
# draw the provided points on the image
def drawPoints(img, pts, colors):
for pt, color in zip(pts, colors):
cv2.circle(img, tuple(pt[0]), 5, color, -1)
# draw the provided lines on the image
def drawLines(img, lines, colors):
_, c, _ = img.shape
for r, color in zip(lines, colors):
x0, y0 = map(int, [0, -r[2]/r[1]])
x1, y1 = map(int, [c, -(r[2]+r[0]*c)/r[1]])
cv2.line(img, (x0, y0), (x1, y1), color, 1)
if __name__ == '__main__':
# undistort our chosen images using the left and right camera and distortion matricies
imgL = undistort("2L/2L34.bmp", mtxL, distL)
imgR = undistort("2R/2R34.bmp", mtxR, distR)
imgL = cv2.cvtColor(imgL, cv2.COLOR_GRAY2BGR)
imgR = cv2.cvtColor(imgR, cv2.COLOR_GRAY2BGR)
# use get corners to get the new image locations of the checcboard corners (undistort will have moved them a little)
_, imgpointsL, _ = getCorners(["2L34_undistorted.bmp"], chessboard_size, show=False)
_, imgpointsR, _ = getCorners(["2R34_undistorted.bmp"], chessboard_size, show=False)
# get 3 image points of interest from each image and draw them
ptsL = np.asarray([imgpointsL[0][0], imgpointsL[0][10], imgpointsL[0][20]])
ptsR = np.asarray([imgpointsR[0][5], imgpointsR[0][15], imgpointsR[0][25]])
drawPoints(imgL, ptsL, colors[3:6])
drawPoints(imgR, ptsR, colors[0:3])
# find epilines corresponding to points in right image and draw them on the left image
epilinesR = cv2.computeCorrespondEpilines(ptsR.reshape(-1, 1, 2), 2, F)
epilinesR = epilinesR.reshape(-1, 3)
drawLines(imgL, epilinesR, colors[0:3])
# find epilines corresponding to points in left image and draw them on the right image
epilinesL = cv2.computeCorrespondEpilines(ptsL.reshape(-1, 1, 2), 1, F)
epilinesL = epilinesL.reshape(-1, 3)
drawLines(imgR, epilinesL, colors[3:6])
# combine the corresponding images into one and display them
combineSideBySide(imgL, imgR, "epipolar_lines", save=True)
Run Code Online (Sandbox Code Playgroud)
希望这会有所帮助!
| 归档时间: |
|
| 查看次数: |
6104 次 |
| 最近记录: |