Cib*_*bic 6 python string pandas
我知道有一个关于在一列中搜索字符串的相关线程(这里)但是如何在所有列中使用pd.Series.str.contains(pattern)?
df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': [u'aball', u'bball', u'cnut', u'fball'],
'id2': [u'uball', u'mball', u'pnut', u'zball']})
In [3]: df[df['ids'].str.contains("ball")]
Out[3]:
ids vals
0 aball 1
1 bball 2
3 fball 4
Run Code Online (Sandbox Code Playgroud)
使用select_dtypes的唯一对象列(显然字符串)与applymap和in:
df = pd.DataFrame({'vals': [1, 2, 3, 4],
'ids': [None, u'bball', u'cnut', u'fball'],
'id2': [u'uball', u'mball', u'pnut', u'zball']})
print (df)
vals ids id2
0 1 None uball
1 2 bball mball
2 3 cnut pnut
3 4 fball zball
mask = df.select_dtypes(include=[object]).applymap(lambda x: 'ball' in x if pd.notnull(x) else False)
#if always non NaNs, no Nones
#mask = df.select_dtypes(include=[object]).applymap(lambda x: 'ball' in x)
print (mask)
ids id2
0 False True
1 True True
2 False False
3 True True
Run Code Online (Sandbox Code Playgroud)
mask = df.select_dtypes(include=[object]).apply(lambda x: x.str.contains('ball', na=False))
#if always non NaNs, no Nones
#mask = df.select_dtypes(include=[object]).apply(lambda x: x.str.contains('ball'))
print (mask)
ids id2
0 False True
1 True True
2 False False
3 True True
Run Code Online (Sandbox Code Playgroud)
然后过滤DataFrame.any用于检查True每行至少一行或DataFrame.all检查每行的所有值:
df1 = df[mask.any(axis=1)]
print (df1)
vals ids id2
0 1 None uball
1 2 bball mball
3 4 fball zball
df2 = df[mask.all(axis=1)]
print (df2)
vals ids id2
1 2 bball mball
3 4 fball zball
Run Code Online (Sandbox Code Playgroud)
stack如果您只选择可能具有'ball'列的对象dtype object,那么您可以stack将结果数据帧转换为系列对象.此时,您可以执行pandas.Series.str.contains并将unstack结果返回到数据框中.
df.select_dtypes(include=[object]).stack().str.contains('ball').unstack()
ids id2
0 True True
1 True True
2 False False
3 True True
Run Code Online (Sandbox Code Playgroud)