blu*_*sky 2 python machine-learning backpropagation pytorch
遵循以下示例:
https://github.com/jcjohnson/pytorch-examples
该代码可以成功训练:
# Code in file tensor/two_layer_net_tensor.py
import torch
device = torch.device('cpu')
# device = torch.device('cuda') # Uncomment this to run on GPU
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random input and output data
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
# Randomly initialize weights
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)
learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.mm(w1)
h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2)
# Compute and print loss; loss is a scalar, and is stored in a PyTorch Tensor
# of shape (); we can get its value as a Python number with loss.item().
loss = (y_pred - y).pow(2).sum()
print(t, loss.item())
# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.t().mm(grad_y_pred)
grad_h_relu = grad_y_pred.mm(w2.t())
grad_h = grad_h_relu.clone()
grad_h[h < 0] = 0
grad_w1 = x.t().mm(grad_h)
# Update weights using gradient descent
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
Run Code Online (Sandbox Code Playgroud)
我如何预测一个例子?到目前为止,我的经验是使用just来使用前馈网络numpy
。训练模型后,我利用前向传播,但仅举一个例子:
numpy
代码片段在哪里new
,我正在尝试预测的输出值:
new = np.asarray(toclassify)
Z1 = np.dot(weight_layer_1, new.T) + bias_1
sigmoid_activation_1 = sigmoid(Z1)
Z2 = np.dot(weight_layer_2, sigmoid_activation_1) + bias_2
sigmoid_activation_2 = sigmoid(Z2)
Run Code Online (Sandbox Code Playgroud)
sigmoid_activation_2
包含预测的向量属性
惯用的PyTorch方法是否相同?使用前向传播以进行单个预测?
您发布的代码是一个简单的演示,试图揭示这种深度学习框架的内部机制。这些框架,包括PyTorch,Keras,Tensorflow等,只要定义了网络结构,就可以自动处理正向计算,跟踪和应用渐变。但是,您显示的代码仍然尝试手动执行这些操作。这就是为什么在预测一个示例时会感到笨拙的原因,因为您仍在从头开始。
在实践中,我们将定义一个从torch.nn.Module
该函数中的所有网络组件(如神经层,GRU,LSTM层等)继承并初始化的模型类__init__
,并定义这些组件如何与该forward
函数中的网络输入交互。
从您提供的页面中获取示例:
# Code in file nn/two_layer_net_module.py
import torch
class TwoLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out):
"""
In the constructor we instantiate two nn.Linear modules and
assign them as
member variables.
"""
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(H, D_out)
def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary (differentiable) operations on Tensors.
"""
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# Construct our model by instantiating the class defined above.
model = TwoLayerNet(D_in, H, D_out)
# Construct our loss function and an Optimizer. The call to
model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
loss_fn = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)
# Compute and print loss
loss = loss_fn(y_pred, y)
print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
Run Code Online (Sandbox Code Playgroud)
该代码定义了一个名为TwoLayerNet模型,它初始化在两个线性层__init__
功能,并进一步定义如何这两个线性电源与输入交互x
的forward
功能。定义好模型后,我们只需调用模型实例即可执行单个前馈操作,如代码片段结尾所示:
y_pred = model(x)
Run Code Online (Sandbox Code Playgroud)