在Python中嵌入低性能脚本语言

Ian*_*Ian 17 python scripting-language embedded-language

我有一个网络应用程序.作为其中的一部分,我需要应用程序的用户能够编写(或复制和粘贴)非常简单的脚本来运行他们的数据.

脚本确实非常简单,性能只是最小的问题.脚本的复杂性的例子我的意思是:

ratio = 1.2345678
minimum = 10

def convert(money)
    return money * ratio
end

if price < minimum
    cost = convert(minimum)
else
    cost = convert(price)
end
Run Code Online (Sandbox Code Playgroud)

价格和成本是全局变量(我可以将这些变量提供给环境并在计算后访问).

但是,我确实需要保证一些东西.

  1. 运行的任何脚本都无法访问Python环境.他们无法导入东西,调用我没有明确公开的方法,读取或写入文件,生成线程等等.我需要完全锁定.

  2. 我需要能够对脚本运行的"周期"数量进行硬限制.Cycles是这里的通用术语.如果语言是字节编译的,则可以是VM指令.Apply-调用Eval/Apply循环.或者只是通过一些运行脚本的中央处理循环进行迭代.细节并不像我能够在短时间内停止运行并向所有者发送电子邮件并说"你的脚本似乎只是添加几个数字 - 将它们整理出来".

  3. 它必须在Vanilla未修补的CPython上运行.

到目前为止,我一直在编写自己的DSL来完成这项任务.我能做到.但我想知道我是否可以建立在巨人的肩膀上.是否有可用于Python的迷你语言?

有很多hacky Lisp变种(即使是我在Github上写过的),但是我更喜欢具有更多非专业语法的东西(比如更多的C或Pascal),并且我正在考虑将其作为编码的替代方案一个人,我想要一些更成熟的东西.

有任何想法吗?

sam*_*ias 12

这是我对这个问题的看法.要求用户脚本在vanilla CPython中运行意味着您需要为您的迷你语言编写解释器,或者将其编译为Python字节码(或使用Python作为源语言),然后在执行之前"清理"字节码.

基于用户可以用Python编写脚本的假设,我已经找到了一个快速的例子,并且可以通过从解析树中过滤不安全语法和/或从中删除不安全的操作码来对源和字节码进行充分的清理.字节码.

解决方案的第二部分要求用户脚本字节码由监视程序任务定期中断,这将确保用户脚本不超过某些操作码限制,并且所有这些都在vanilla CPython上运行.

我的尝试总结,主要集中在问题的第二部分.

  • 用户脚本是用Python编写的.
  • 使用byteplay过滤和修改字节码.
  • 检测用户的字节码以插入操作码计数器并调用上下文切换到看门狗任务的函数.
  • 使用greenlet执行用户的字节码,并在用户脚本和看门狗协程之间切换.
  • 看门狗对引发错误之前可执行的操作码数量强制执行预设限制.

希望这至少会朝着正确的方向发展.当你到达时,我很想听听你的解决方案.

源代码lowperf.py:

# std
import ast
import dis
import sys
from pprint import pprint

# vendor
import byteplay
import greenlet

# bytecode snippet to increment our global opcode counter
INCREMENT = [
    (byteplay.LOAD_GLOBAL, '__op_counter'),
    (byteplay.LOAD_CONST, 1),
    (byteplay.INPLACE_ADD, None),
    (byteplay.STORE_GLOBAL, '__op_counter')
    ]

# bytecode snippet to perform a yield to our watchdog tasklet.
YIELD = [
    (byteplay.LOAD_GLOBAL, '__yield'),
    (byteplay.LOAD_GLOBAL, '__op_counter'),
    (byteplay.CALL_FUNCTION, 1),
    (byteplay.POP_TOP, None)
    ]

def instrument(orig):
    """
    Instrument bytecode.  We place a call to our yield function before
    jumps and returns.  You could choose alternate places depending on 
    your use case.
    """
    line_count = 0
    res = []
    for op, arg in orig.code:
        line_count += 1

        # NOTE: you could put an advanced bytecode filter here.

        # whenever a code block is loaded we must instrument it
        if op == byteplay.LOAD_CONST and isinstance(arg, byteplay.Code):
            code = instrument(arg)
            res.append((op, code))
            continue

        # 'setlineno' opcode is a safe place to increment our global 
        # opcode counter.
        if op == byteplay.SetLineno:
            res += INCREMENT
            line_count += 1

        # append the opcode and its argument
        res.append((op, arg))

        # if we're at a jump or return, or we've processed 10 lines of
        # source code, insert a call to our yield function.  you could 
        # choose other places to yield more appropriate for your app.
        if op in (byteplay.JUMP_ABSOLUTE, byteplay.RETURN_VALUE) \
                or line_count > 10:
            res += YIELD
            line_count = 0

    # finally, build and return new code object
    return byteplay.Code(res, orig.freevars, orig.args, orig.varargs,
        orig.varkwargs, orig.newlocals, orig.name, orig.filename,
        orig.firstlineno, orig.docstring)

def transform(path):
    """
    Transform the Python source into a form safe to execute and return
    the bytecode.
    """
    # NOTE: you could call ast.parse(data, path) here to get an
    # abstract syntax tree, then filter that tree down before compiling
    # it into bytecode.  i've skipped that step as it is pretty verbose.
    data = open(path, 'rb').read()
    suite = compile(data, path, 'exec')
    orig = byteplay.Code.from_code(suite)
    return instrument(orig)

def execute(path, limit = 40):
    """
    This transforms the user's source code into bytecode, instrumenting
    it, then kicks off the watchdog and user script tasklets.
    """
    code = transform(path)
    target = greenlet.greenlet(run_task)

    def watcher_task(op_count):
        """
        Task which is yielded to by the user script, making sure it doesn't
        use too many resources.
        """
        while 1:
            if op_count > limit:
                raise RuntimeError("script used too many resources")
            op_count = target.switch()

    watcher = greenlet.greenlet(watcher_task)
    target.switch(code, watcher.switch)

def run_task(code, yield_func):
    "This is the greenlet task which runs our user's script."
    globals_ = {'__yield': yield_func, '__op_counter': 0}
    eval(code.to_code(), globals_, globals_)

execute(sys.argv[1])
Run Code Online (Sandbox Code Playgroud)

这是一个示例用户脚本user.py:

def otherfunc(b):
    return b * 7

def myfunc(a):
    for i in range(0, 20):
        print i, otherfunc(i + a + 3)

myfunc(2)
Run Code Online (Sandbox Code Playgroud)

这是一个示例运行:

% python lowperf.py user.py

0 35
1 42
2 49
3 56
4 63
5 70
6 77
7 84
8 91
9 98
10 105
11 112
Traceback (most recent call last):
  File "lowperf.py", line 114, in <module>
    execute(sys.argv[1])
  File "lowperf.py", line 105, in execute
    target.switch(code, watcher.switch)
  File "lowperf.py", line 101, in watcher_task
    raise RuntimeError("script used too many resources")
RuntimeError: script used too many resources
Run Code Online (Sandbox Code Playgroud)


Sum*_*rve 8

Jispy是完美的搭配!

  • 它是 Python 中的 JavaScript 解释器,主要用于在 Python 中嵌入 JS。

  • 值得注意的是,它提供了递归和循环的检查和上限。正如需要的那样。

  • 它允许您轻松地使 Python 函数可用于 JavaScript 代码。

  • 默认情况下,它不会暴露主机的文件系统或任何其他敏感元素。

全面披露:

  • Jispy 是我的项目。我显然是有偏见的。
  • 尽管如此,在这里,它似乎确实是完美的搭配。

PS:

  • 这个答案是在提出这个问题大约 3 年后写的。
  • 这么晚的答案背后的动机很简单:
    考虑到 Jispy 对手头问题的限制,未来有类似需求的读者应该能够从中受益。


lhf*_*lhf 5

试试路亚。您提到的语法几乎与 Lua 的相同。请参阅如何将 Lua 嵌入 Python 3.x?