Bas*_*asj 2 python opencv image-processing image-morphology cv2
我正在编写的工具中的第一个处理步骤之一是找到 4 个大黑色方块的外角坐标。然后它们将用于进行单应变换,以对图像进行去歪斜/反旋转(又名透视变换),最终得到一个矩形图像。这是一个旋转和嘈杂的输入示例(下载链接在这里):
为了只保留大方块,我使用了形态变换,如关闭/打开:
import cv2, numpy as np
img = cv2.imread('rotatednoisy-cropped.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((30, 30), np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
cv2.imwrite('output.png', img)
Run Code Online (Sandbox Code Playgroud)
输入文件(下载链接):
形态变换后的输出:
问题:输出的正方形不再是正方形,因此正方形左上角的坐标根本不精确!
我可以减少内核大小,但它会保留更多不需要的小元素。
问题:如何更好地检测正方形的角点?
笔记:
由于形态闭合只是膨胀 + 侵蚀,我找到了罪魁祸首:
import cv2, numpy as np
img = cv2.imread('rotatednoisy-cropped.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((30, 30), np.uint8)
img = cv2.dilate(img, kernel, iterations = 1)
Run Code Online (Sandbox Code Playgroud)
经过这一步,还是可以的:
然后
img = cv2.erode(img, kernel, iterations = 1)
Run Code Online (Sandbox Code Playgroud)
给
现在不行了!
有关如何消除图像倾斜的详细说明,请参阅此链接。
import cv2
import numpy as np
def corners(box):
cx,cy,w,h,angle = box[0][0],box[0][1],box[1][0],box[1][1],box[2]
CV_PI = 22./7.
_angle = angle*CV_PI/180.;
b = np.cos(_angle)*0.5;
a = np.sin(_angle)*0.5;
pt = []
pt.append((int(cx - a*h - b*w),int(cy + b*h - a*w)));
pt.append((int(cx + a*h - b*w),int(cy - b*h - a*w)));
pt.append((int(2*cx - pt[0][0]),int(2*cy - pt[0][1])));
pt.append((int(2*cx - pt[1][0]),int(2*cy - pt[1][1])));
return pt
if __name__ == '__main__':
image = cv2.imread('image.jpg',cv2.IMREAD_UNCHANGED)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
n = 3
sigma = 0.3 * (n/2 - 1) + 0.8
gray = cv2.GaussianBlur(gray, ksize=(n,n), sigmaX=sigma)
ret,binary = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU+cv2.THRESH_BINARY)
_,contours,_ = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours.sort(key=lambda x: len(x), reverse=True)
points = []
for i in range(0,4):
shape = cv2.approxPolyDP(contours[i], 0.05*cv2.arcLength(contours[i],True), True)
if len(shape) == 4:
points.append(shape)
points = np.array(points,dtype=np.int32)
points = np.reshape(points, (-1,2))
box = cv2.minAreaRect(points)
pt = corners(box)
for i in range(0,4):
image = cv2.line(image, (pt[i][0],pt[i][1]), (pt[(i+1)%4][0],pt[(i+1)%4][1]), (0,0,255))
(h,w) = image.shape[:2]
(center) = (w//2,h//2)
angle = box[2]
if angle < -45:
angle = (angle+90)
else:
angle = -angle
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(image, M, (w,h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT)
cv2.imshow('image', image)
cv2.imshow('rotated', rotated)
cv2.waitKey(0)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1408 次 |
最近记录: |