RGB图像中最主要的颜色-OpenCV / NumPy / Python

Pri*_*muS 8 python opencv numpy python-3.x

我有一个python图像处理功能,它使用尝试来获取图像的主要颜色。我利用了在这里找到的功能https://github.com/tarikd/python-kmeans-dominant-colors/blob/master/utils.py

它可以工作,但是不幸的是,我不太了解它的作用,并且我了解到它np.histogram相当慢,我应该使用cv2.calcHist它,因为按照以下方法它的速度要快40倍:https : //docs.opencv.org/trunk/d1/db7/tutorial_py_histogram_begins .html

我想了解如何更新代码以使用cv2.calcHist,或者更好地使用我必须输入的值。

我的功能

def centroid_histogram(clt):
    # grab the number of different clusters and create a histogram
    # based on the number of pixels assigned to each cluster
    num_labels = np.arange(0, len(np.unique(clt.labels_)) + 1)
    (hist, _) = np.histogram(clt.labels_, bins=num_labels)

    # normalize the histogram, such that it sums to one
    hist = hist.astype("float")
    hist /= hist.sum()

    # return the histogram
    return hist
Run Code Online (Sandbox Code Playgroud)

pprintclt是这样的,不知道这是否有助于

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
    n_clusters=1, n_init=10, n_jobs=1, precompute_distances='auto',
    random_state=None, tol=0.0001, verbose=0)
Run Code Online (Sandbox Code Playgroud)

我的代码可以在这里找到:https : //github.com/primus852/python-movie-barcode

我是一个初学者,因此非常感谢您的帮助。

按要求:

样本图片

样品

最主要的颜色:

rgb(22,28,37)

直方图的计算时间:

0.021515369415283203s

zin*_*rod 13

@Divakar 给出了很好的答案。但如果你想将自己的代码移植到 OpenCV,那么:

    img = cv2.imread('image.jpg',cv2.IMREAD_UNCHANGED)

    data = np.reshape(img, (-1,3))
    print(data.shape)
    data = np.float32(data)

    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    flags = cv2.KMEANS_RANDOM_CENTERS
    compactness,labels,centers = cv2.kmeans(data,1,None,criteria,10,flags)

    print('Dominant color is: bgr({})'.format(centers[0].astype(np.int32)))
Run Code Online (Sandbox Code Playgroud)

您的图像的结果:

主色是:bgr([41 31 23])

花费时间:0.10798478126525879秒


Div*_*kar 7

可以建议使用np.uniquenp.bincount获得最主要颜色的两种方法。另外,在链接的页面中,它是bincount作为一种更快的替代方法讨论的,因此这可能是可行的方法。

方法1

def unique_count_app(a):
    colors, count = np.unique(a.reshape(-1,a.shape[-1]), axis=0, return_counts=True)
    return colors[count.argmax()]
Run Code Online (Sandbox Code Playgroud)

方法#2

def bincount_app(a):
    a2D = a.reshape(-1,a.shape[-1])
    col_range = (256, 256, 256) # generically : a2D.max(0)+1
    a1D = np.ravel_multi_index(a2D.T, col_range)
    return np.unravel_index(np.bincount(a1D).argmax(), col_range)
Run Code Online (Sandbox Code Playgroud)

1000 x 1000在宽范围内对彩色图像进行验证和计时,以[0,9)实现可重现的结果-

In [28]: np.random.seed(0)
    ...: a = np.random.randint(0,9,(1000,1000,3))
    ...: 
    ...: print unique_count_app(a)
    ...: print bincount_app(a)
[4 7 2]
(4, 7, 2)

In [29]: %timeit unique_count_app(a)
1 loop, best of 3: 820 ms per loop

In [30]: %timeit bincount_app(a)
100 loops, best of 3: 11.7 ms per loop
Run Code Online (Sandbox Code Playgroud)

进一步提振

在利用进一步推动multi-corenumexpr模块大数据-

import numexpr as ne

def bincount_numexpr_app(a):
    a2D = a.reshape(-1,a.shape[-1])
    col_range = (256, 256, 256) # generically : a2D.max(0)+1
    eval_params = {'a0':a2D[:,0],'a1':a2D[:,1],'a2':a2D[:,2],
                   's0':col_range[0],'s1':col_range[1]}
    a1D = ne.evaluate('a0*s0*s1+a1*s0+a2',eval_params)
    return np.unravel_index(np.bincount(a1D).argmax(), col_range)
Run Code Online (Sandbox Code Playgroud)

时间-

In [90]: np.random.seed(0)
    ...: a = np.random.randint(0,9,(1000,1000,3))

In [91]: %timeit unique_count_app(a)
    ...: %timeit bincount_app(a)
    ...: %timeit bincount_numexpr_app(a)
1 loop, best of 3: 843 ms per loop
100 loops, best of 3: 12 ms per loop
100 loops, best of 3: 8.94 ms per loop
Run Code Online (Sandbox Code Playgroud)