imp*_*rme 5 python merge out-of-memory dataframe pandas
假设我有4个小型DataFrame
df1,df2,df3和df4
import pandas as pd
from functools import reduce
import numpy as np
df1 = pd.DataFrame([['a', 1, 10], ['a', 2, 20], ['b', 1, 4], ['c', 1, 2], ['e', 2, 10]])
df2 = pd.DataFrame([['a', 1, 15], ['a', 2, 20], ['c', 1, 2]])
df3 = pd.DataFrame([['d', 1, 10], ['e', 2, 20], ['f', 1, 1]])
df4 = pd.DataFrame([['d', 1, 10], ['e', 2, 20], ['f', 1, 15]])
df1.columns = ['name', 'id', 'price']
df2.columns = ['name', 'id', 'price']
df3.columns = ['name', 'id', 'price']
df4.columns = ['name', 'id', 'price']
df1 = df1.rename(columns={'price':'pricepart1'})
df2 = df2.rename(columns={'price':'pricepart2'})
df3 = df3.rename(columns={'price':'pricepart3'})
df4 = df4.rename(columns={'price':'pricepart4'})
Run Code Online (Sandbox Code Playgroud)
上面创建的是4个DataFrame,下面的代码是我想要的。
# Merge dataframes
df = pd.merge(df1, df2, left_on=['name', 'id'], right_on=['name', 'id'], how='outer')
df = pd.merge(df , df3, left_on=['name', 'id'], right_on=['name', 'id'], how='outer')
df = pd.merge(df , df4, left_on=['name', 'id'], right_on=['name', 'id'], how='outer')
# Fill na values with 'missing'
df = df.fillna('missing')
Run Code Online (Sandbox Code Playgroud)
因此,我针对4个没有很多行和列的DataFrame实现了这一点。
基本上,我想将上述外部合并解决方案扩展到大小为62245 X 3的MULTIPLE(48)DataFrames:
因此,我通过使用lambda reduce的另一个StackOverflow答案构建了这个解决方案:
from functools import reduce
import pandas as pd
import numpy as np
dfList = []
#To create the 48 DataFrames of size 62245 X 3
for i in range(0, 49):
dfList.append(pd.DataFrame(np.random.randint(0,100,size=(62245, 3)), columns=['name', 'id', 'pricepart' + str(i + 1)]))
#The solution I came up with to extend the solution to more than 3 DataFrames
df_merged = reduce(lambda left, right: pd.merge(left, right, left_on=['name', 'id'], right_on=['name', 'id'], how='outer'), dfList).fillna('missing')
Run Code Online (Sandbox Code Playgroud)
这引起了MemoryError。
我不知道该怎么做才能阻止内核崩溃。.我已经坚持了两天。.我执行的EXACT merge操作的一些代码不会导致MemoryError或产生与您相同的结果结果,将不胜感激。
另外,在主数据帧(不是可再现48个DataFrames中的例子)的3列的类型int64,int64和float64与我宁愿他们留,因为整数和浮子,它代表的这种方式。
编辑:
我不是以迭代方式尝试运行合并操作或使用reduce lambda函数,而是以2为一组来完成它!另外,我更改了某些列的数据类型,而有些则不需要float64。所以我把它归结为float16。距离很远,但是仍然会抛出异常MemoryError。
intermediatedfList = dfList
tempdfList = []
#Until I merge all the 48 frames two at a time, till it becomes size 2
while(len(intermediatedfList) != 2):
#If there are even number of DataFrames
if len(intermediatedfList)%2 == 0:
#Go in steps of two
for i in range(0, len(intermediatedfList), 2):
#Merge DataFrame in index i, i + 1
df1 = pd.merge(intermediatedfList[i], intermediatedfList[i + 1], left_on=['name', 'id'], right_on=['name', 'id'], how='outer')
print(df1.info(memory_usage='deep'))
#Append it to this list
tempdfList.append(df1)
#After DataFrames in intermediatedfList merging it two at a time using an auxillary list tempdfList,
#Set intermediatedfList to be equal to tempdfList, so it can continue the while loop.
intermediatedfList = tempdfList
else:
#If there are odd number of DataFrames, keep the first DataFrame out
tempdfList = [intermediatedfList[0]]
#Go in steps of two starting from 1 instead of 0
for i in range(1, len(intermediatedfList), 2):
#Merge DataFrame in index i, i + 1
df1 = pd.merge(intermediatedfList[i], intermediatedfList[i + 1], left_on=['name', 'id'], right_on=['name', 'id'], how='outer')
print(df1.info(memory_usage='deep'))
tempdfList.append(df1)
#After DataFrames in intermediatedfList merging it two at a time using an auxillary list tempdfList,
#Set intermediatedfList to be equal to tempdfList, so it can continue the while loop.
intermediatedfList = tempdfList
Run Code Online (Sandbox Code Playgroud)
有什么方法可以优化我的代码来避免MemoryError,我什至使用过192GB的RAM(我现在欠他们7美元,我本来可以给你们一个),这比我得到的要远得多,它将MemoryError28个DataFrame的列表减少到4个后仍然抛出。
通过使用执行索引对齐的串联,您可能会获得一些好处pd.concat。希望它应该比外部合并更快,更有效地利用内存。
df_list = [df1, df2, ...]
for df in df_list:
df.set_index(['name', 'id'], inplace=True)
df = pd.concat(df_list, axis=1) # join='inner'
df.reset_index(inplace=True)
Run Code Online (Sandbox Code Playgroud)
或者,您可以用concat迭代代替(第二步)join:
from functools import reduce
df = reduce(lambda x, y: x.join(y), df_list)
Run Code Online (Sandbox Code Playgroud)
这可能会更好,也可能不会更好merge。
似乎是 dask 数据帧设计目的的一部分(数据帧的内存不足操作)。有关示例代码,请参阅 在 Pandas 中连接两个大型数据集的最佳方法。抱歉,没有复制和粘贴,但不想看起来像我试图从链接条目中的回答者那里获得荣誉。
| 归档时间: |
|
| 查看次数: |
5276 次 |
| 最近记录: |