Mil*_*los 2 machine-learning keras tensorflow loss-function
我想编写一个自定义损失函数,该函数将权衡正目标值的低估。它将像均方误差一样工作,唯一的区别在于,在这种情况下,均方误差将乘以大于1的权重。
我这样写:
def wmse(ground_truth, predictions):
square_errors = np.square(np.subtract(ground_truth, predictions))
weights = np.ones_like(square_errors)
weights[np.logical_and(predictions < ground_truth, np.sign(ground_truth) > 0)] = 100
weighted_mse = np.mean(np.multiply(square_errors, weights))
return weighted_mse
Run Code Online (Sandbox Code Playgroud)
然而,当我把它提供给我的顺序模型keras与tensorflow作为后端:
model.compile(loss=wmse,optimizer='rmsprop')
Run Code Online (Sandbox Code Playgroud)
我收到以下错误:
raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed.
TypeError: Using a `tf.Tensor` as a Python `bool` is not allowed. Use `if t is not None:` instead of `if t:` to test if a tensor is defined, and use TensorFlow ops such as tf.cond to execute subgraphs conditioned on the value of a tensor.
Run Code Online (Sandbox Code Playgroud)
追溯指向以下行wmse:
weights[np.logical_and(predictions < ground_truth, np.sign(ground_truth) > 0)] = 100
Run Code Online (Sandbox Code Playgroud)
我从来没有工作过keras,也没有tensorflow到现在为止,因此,如果有人帮助我适应这个损失函数来我会很感激keras/ tensorflow框架。我试图取代np.logical_and用tensorflow.logical_and,但无济于事,错误依然存在。
就像@nuric提到的那样,您必须仅使用带有衍生工具的Keras / Tensorflow操作来实现损失,因为这些框架将无法通过其他操作(例如numpy操作)进行反向传播。
仅Keras的实现可能如下所示:
from keras import backend as K
def wmse(ground_truth, predictions):
square_errors = (ground_truth - predictions) ** 2
weights = K.ones_like(square_errors)
mask = K.less(predictions, ground_truth) & K.greater(K.sign(ground_truth), 0)
weights = K.switch(mask, weights * 100, weights)
weighted_mse = K.mean(square_errors * weights)
return weighted_mse
gt = K.constant([-2, 2, 1, -1, 3], dtype="int32")
pred = K.constant([-2, 1, 1, -1, 1], dtype="int32")
weights, loss = wmse(gt, pred)
sess = K.get_session()
print(loss.eval(session=sess))
# 100
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
997 次 |
| 最近记录: |