我试图映射Human Poverty Index为尼泊尔各区使用以GeoJSON和GGPLOT2 R中地区分布图.
我从这里读到geojson尼泊尔的数据.
这就是我做的:
# Read geojson data for nepal with districts
library(tidyverse)
library(geojsonio)
#>
#> Attaching package: 'geojsonio'
#> The following object is masked from 'package:base':
#>
#> pretty
spdf <- geojson_read("nepal-districts.geojson", what = "sp")
##https://github.com/mesaugat/geoJSON-Nepal/blob/master/nepal-districts.geojson
#tidy data for ggplot2
library(broom)
spdf_fortified <- tidy(spdf)
#> Regions defined for each Polygons
# plot
ggplot() +
geom_polygon(data = spdf_fortified, aes( x = long, y = lat, group = group)) +
theme_void() +
coord_map()
Run Code Online (Sandbox Code Playgroud)

names(spdf_fortified)
#> [1] "long" "lat" "order" "hole" "piece" "group" "id"
#Now read the data to map to districts
data=read.csv("data.csv")
#data from here
#https://github.com/opennepal/odp-poverty/blob/master/Human%20Poverty%20Index%20Value%20by%20Districts%20(2011)/data.csv
#filter and select data to reflect Value of HPI in various districts
data <- data %>% filter(Sub.Group=="HPI") %>% select(District,Value)
head(data)
#> District Value
#> 1 Achham 46.68
#> 2 Arghakhanchi 27.37
#> 3 Banke 32.10
#> 4 Baglung 27.33
#> 5 Baitadi 39.58
#> 6 Bajhang 45.32
# Value represents HPI value for each district.
#Now how to merge and fill Value for various districts
#
#
#
#
Run Code Online (Sandbox Code Playgroud)
由reprex包(v0.2.0)创建于2018-06-14.
如果我可以合并spdf_fortified和data成merged_df,我想我可以得到chloroplethr地图这样的代码:
ggplot(data = merged_df, aes(x = long, y = lat, group = group)) + geom_polygon(aes(fill = Value), color = 'gray', size = 0.1)
Run Code Online (Sandbox Code Playgroud)
合并两个数据有什么帮助吗?
不要颠覆整个系统,但我最近一直在和sf一起工作,并且发现它比sp更容易使用.ggplot也有很好的支持,因此您可以geom_sf通过将变量映射到以下内容来绘制,变成一个等值线fill:
library(sf)
library(tidyverse)
nepal_shp <- read_sf('https://raw.githubusercontent.com/mesaugat/geoJSON-Nepal/master/nepal-districts.geojson')
nepal_data <- read_csv('https://raw.githubusercontent.com/opennepal/odp-poverty/master/Human%20Poverty%20Index%20Value%20by%20Districts%20(2011)/data.csv')
# calculate points at which to plot labels
centroids <- nepal_shp %>%
st_centroid() %>%
bind_cols(as_data_frame(st_coordinates(.))) # unpack points to lat/lon columns
nepal_data %>%
filter(`Sub Group` == "HPI") %>%
mutate(District = toupper(District)) %>%
left_join(nepal_shp, ., by = c('DISTRICT' = 'District')) %>%
ggplot() +
geom_sf(aes(fill = Value)) +
geom_text(aes(X, Y, label = DISTRICT), data = centroids, size = 1, color = 'white')
Run Code Online (Sandbox Code Playgroud)

其中三个区域在两个数据框架中的名称不同,必须进行清理,但如果没有大量工作,这是一个非常好的起点.
ggrepel::geom_text_repel 有可能避免重叠标签.
| 归档时间: |
|
| 查看次数: |
543 次 |
| 最近记录: |