在尝试获取分组滞后变量(不可能仅使用lag
)的过程中,建议的解决方案是将数据拉出,滞后于不同的行,然后重新加入它.
我更喜欢在不创建中间对象的情况下这样做,并且希望在链中间进行.然而,它似乎没有像我期望的那样工作,并且问题似乎是.
在left_join中使用嵌套链之间的一些交互.
require(tidyverse)
#> Loading required package: tidyverse
df <- data.frame(Team = c("A", "A", "A", "A", "B", "B", "B", "C", "C", "D", "D"),
Date = c("2016-05-10","2016-05-10", "2016-05-10", "2016-05-10",
"2016-05-12", "2016-05-12", "2016-05-12",
"2016-05-15","2016-05-15",
"2016-05-30", "2016-05-30"),
Points = c(1,4,3,2,1,5,6,1,2,3,9)
)
#This works:
df %>% left_join(x = ., y = df %>%
distinct(Team, Date) %>%
mutate(Date_Lagged = lag(Date)))
#> Joining, by = c("Team", "Date")
#> Team Date Points Date_Lagged
#> 1 A 2016-05-10 1 <NA>
#> 2 A 2016-05-10 4 <NA>
#> 3 A 2016-05-10 3 <NA>
#> 4 A 2016-05-10 2 <NA>
#> 5 B 2016-05-12 1 2016-05-10
#> 6 B 2016-05-12 5 2016-05-10
#> 7 B 2016-05-12 6 2016-05-10
#> 8 C 2016-05-15 1 2016-05-12
#> 9 C 2016-05-15 2 2016-05-12
#> 10 D 2016-05-30 3 2016-05-15
#> 11 D 2016-05-30 9 2016-05-15
#And this works:
df %>% left_join(x = ., y = .)
#> Joining, by = c("Team", "Date", "Points")
#> Team Date Points
#> 1 A 2016-05-10 1
#> 2 A 2016-05-10 4
#> 3 A 2016-05-10 3
#> 4 A 2016-05-10 2
#> 5 B 2016-05-12 1
#> 6 B 2016-05-12 5
#> 7 B 2016-05-12 6
#> 8 C 2016-05-15 1
#> 9 C 2016-05-15 2
#> 10 D 2016-05-30 3
#> 11 D 2016-05-30 9
#This doesn't work despite the fact that `.` is df.
df %>% left_join(x = ., y = . %>%
distinct(Team, Date) %>%
mutate(Date_Lagged = lag(Date)))
#> Error in UseMethod("tbl_vars"): no applicable method for 'tbl_vars' applied to an object of class "c('fseq', 'function')"
#Desired output
distinct(df, Team, Date) %>%
mutate(Date_Lagged = lag(Date)) %>%
right_join(., df) %>%
select(Team, Date, Points, Date_Lagged)
#> Joining, by = c("Team", "Date")
#> Team Date Points Date_Lagged
#> 1 A 2016-05-10 1 <NA>
#> 2 A 2016-05-10 4 <NA>
#> 3 A 2016-05-10 3 <NA>
#> 4 A 2016-05-10 2 <NA>
#> 5 B 2016-05-12 1 2016-05-10
#> 6 B 2016-05-12 5 2016-05-10
#> 7 B 2016-05-12 6 2016-05-10
#> 8 C 2016-05-15 1 2016-05-12
#> 9 C 2016-05-15 2 2016-05-12
#> 10 D 2016-05-30 3 2016-05-15
#> 11 D 2016-05-30 9 2016-05-15
Run Code Online (Sandbox Code Playgroud)
由reprex包(v0.2.0)创建于2018-06-12.
为了让你的代码工作,你需要在y
参数周围加上大括号,如下所示
df %>% left_join(x = ., y = {.} %>%
distinct(Team, Date) %>%
mutate(Date_Lagged = lag(Date)))
Joining, by = c("Team", "Date")
Team Date Points Date_Lagged
1 A 2016-05-10 1 <NA>
2 A 2016-05-10 4 <NA>
3 A 2016-05-10 3 <NA>
4 A 2016-05-10 2 <NA>
5 B 2016-05-12 1 2016-05-10
6 B 2016-05-12 5 2016-05-10
7 B 2016-05-12 6 2016-05-10
8 C 2016-05-15 1 2016-05-12
9 C 2016-05-15 2 2016-05-12
10 D 2016-05-30 3 2016-05-15
11 D 2016-05-30 9 2016-05-15
Run Code Online (Sandbox Code Playgroud)
你可以这样做
df %>% left_join(df%>%
distinct(Team, Date) %>%
mutate(Date_Lagged = lag(Date)))
Run Code Online (Sandbox Code Playgroud)
虽然这不是我的问题的答案(Onyambo 提供的!),但我想分享的是,我找到了一种替代方法来完成同样的事情。基本上你使用group_by()
andnest()
来压扁tibble并消除重复的变量,做滞后,然后unnest()
.
df %>%
group_by(Team, Date) %>%
nest() %>%
mutate(Date_Lagged = lag(Date)) %>%
unnest()
#> # A tibble: 11 x 4
#> Team Date Date_Lagged Points
#> <fct> <fct> <fct> <dbl>
#> 1 A 2016-05-10 <NA> 1
#> 2 A 2016-05-10 <NA> 4
#> 3 A 2016-05-10 <NA> 3
#> 4 A 2016-05-10 <NA> 2
#> 5 B 2016-05-12 2016-05-10 1
#> 6 B 2016-05-12 2016-05-10 5
#> 7 B 2016-05-12 2016-05-10 6
#> 8 C 2016-05-15 2016-05-12 1
#> 9 C 2016-05-15 2016-05-12 2
#> 10 D 2016-05-30 2016-05-15 3
#> 11 D 2016-05-30 2016-05-15 9
Run Code Online (Sandbox Code Playgroud)
由reprex 包(v0.2.0)于2018年 6 月 14 日创建。