Abh*_*ngh 7 python scikit-learn conv-neural-network keras
我已经使用keras训练了CNN的模型(多类分类),现在我想在图像测试集上评估该模型。
除了准确性,准确性和召回率外,还有什么可能的评估模型的选项?我知道如何从自定义脚本获得精度和召回率。但是我找不到一种方法来获取我的12类图像的混淆矩阵。Scikit学习显示了一种方法,但不适用于图像。我正在使用model.fit_generator()
有没有一种方法可以为我所有的班级创建混淆矩阵,或者为我的班级找到分类信心?尽管我可以下载模型并在本地运行,但我正在使用Google Colab。
任何帮助,将不胜感激。
码:
train_data_path = 'dataset_cfps/train'
validation_data_path = 'dataset_cfps/validation'
#Parametres
img_width, img_height = 224, 224
vggface = VGGFace(model='resnet50', include_top=False, input_shape=(img_width, img_height, 3))
#vgg_model = VGGFace(include_top=False, input_shape=(224, 224, 3))
last_layer = vggface.get_layer('avg_pool').output
x = Flatten(name='flatten')(last_layer)
xx = Dense(256, activation = 'sigmoid')(x)
x1 = BatchNormalization()(xx)
x2 = Dropout(0.3)(x1)
y = Dense(256, activation = 'sigmoid')(x2)
yy = BatchNormalization()(y)
y1 = Dropout(0.6)(yy)
x3 = Dense(12, activation='sigmoid', name='classifier')(y1)
custom_vgg_model = Model(vggface.input, x3)
# Create the model
model = models.Sequential()
# Add the convolutional base model
model.add(custom_vgg_model)
model.summary()
#model = load_model('facenet_resnet_lr3_SGD_sameas1.h5')
def recall(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
# Change the batchsize according to your system RAM
train_batchsize = 32
val_batchsize = 32
train_generator = train_datagen.flow_from_directory(
train_data_path,
target_size=(img_width, img_height),
batch_size=train_batchsize,
class_mode='categorical')
validation_generator = validation_datagen.flow_from_directory(
validation_data_path,
target_size=(img_width, img_height),
batch_size=val_batchsize,
class_mode='categorical',
shuffle=True)
# Compile the model
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(lr=1e-3),
metrics=['acc', recall, precision])
# Train the model
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples/train_generator.batch_size ,
epochs=100,
validation_data=validation_generator,
validation_steps=validation_generator.samples/validation_generator.batch_size,
verbose=1)
# Save the model
model.save('facenet_resnet_lr3_SGD_new_FC.h5')
Run Code Online (Sandbox Code Playgroud)
这是所有类的混淆矩阵(或使用scikit-learn的统计信息)的获取方法:
1.预测班级
test_generator = ImageDataGenerator()
test_data_generator = test_generator.flow_from_directory(
test_data_path, # Put your path here
target_size=(img_width, img_height),
batch_size=32,
shuffle=False)
test_steps_per_epoch = numpy.math.ceil(test_data_generator.samples / test_data_generator.batch_size)
predictions = model.predict_generator(test_data_generator, steps=test_steps_per_epoch)
# Get most likely class
predicted_classes = numpy.argmax(predictions, axis=1)
Run Code Online (Sandbox Code Playgroud)
2,获取真实的类和类标签
true_classes = test_data_generator.classes
class_labels = list(test_data_generator.class_indices.keys())
Run Code Online (Sandbox Code Playgroud)
3.使用scikit-learn获取统计信息
report = metrics.classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report)
Run Code Online (Sandbox Code Playgroud)
你可以在这里阅读更多
编辑:如果上述方法不起作用,请观看此视频,创建混淆矩阵以根据Keras模型进行预测。如果您有任何问题,请仔细阅读评论。或使用Keras CNN图像分类器进行预测
为何scikit-learn功能无法完成任务?您向前传递训练/测试集中的所有样本(图像),将一键编码转换为标签编码(请参阅链接),然后将其传递为sklearn.metrics.confusion_matrixas y_pred。您将以类似的方式进行操作y_true(单打标签)。
样例代码:
import sklearn.metrics as metrics
y_pred_ohe = KerasClassifier.predict(X) # shape=(n_samples, 12)
y_pred_labels = np.argmax(y_pred_ohe, axis=1) # only necessary if output has one-hot-encoding, shape=(n_samples)
confusion_matrix = metrics.confusion_matrix(y_true=y_true_labels, y_pred=y_pred_labels) # shape=(12, 12)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9848 次 |
| 最近记录: |