Pandas 将多个组融合为单列

jer*_*ear 2 python transpose dataframe melt pandas

原始数据帧:

+----+----------+----------+----------+----------+
| ID |  var1hrs |  var2hrs |  ind1var |  ind2var |
+----+----------+----------+----------+----------+
|  1 |       55 |       45 |      123 |      456 |
|  2 |       48 |       60 |      331 |      222 |
+----+----------+----------+----------+----------+
Run Code Online (Sandbox Code Playgroud)

目标数据帧:

+----+------------+------+------+
| ID |    type    |  hrs |  ind |
+----+------------+------+------+
|  1 |  primary   |   55 |  123 |
|  1 |  secondary |   45 |  456 |
|  2 |  primary   |   48 |  331 |
|  2 |  secondary |   60 |  222 |
+----+------------+------+------+
Run Code Online (Sandbox Code Playgroud)

我将如何将多组变量融合到单个标签列中?变量名称中的“1”表示类型 = “primary”,“2”表示类型 = “secondary”。

WeN*_*Ben 5

修改列的名称后,我们可以使用 wide_to_long

df.columns=df.columns.str[:4]
s=pd.wide_to_long(df,['var','ind'],i='ID',j='type').reset_index()
s=s.assign(type=s.type.map({'1':'primary','2':'secondary'})).sort_values('ID')
s

   ID       type  var  ind
0   1    primary   55  123
2   1  secondary   45  456
1   2    primary   48  331
3   2  secondary   60  222
Run Code Online (Sandbox Code Playgroud)