ValueError:模型的输出张量必须是TensorFlow`Telay`的输出

Phạ*_*iển 19 python machine-learning keras tensorflow tensor

我正在使用最后一层中的一些tensorflow函数(reduce_sum和l2_normalize)在Keras中构建模型,同时遇到此问题.我已经搜索了一个解决方案,但所有这些都与"Keras tensor"有关.

这是我的代码:

import tensorflow as tf;
from tensorflow.python.keras import backend as K

vgg16_model = VGG16(weights = 'imagenet', include_top = False, input_shape = input_shape);

fire8 = extract_layer_from_model(vgg16_model, layer_name = 'block4_pool');

pool8 = MaxPooling2D((3,3), strides = (2,2), name = 'pool8')(fire8.output);

fc1 = Conv2D(64, (6,6), strides= (1, 1), padding = 'same', name = 'fc1')(pool8);

fc1 = Dropout(rate = 0.5)(fc1);

fc2 = Conv2D(3, (1, 1), strides = (1, 1), padding = 'same', name = 'fc2')(fc1);

fc2 = Activation('relu')(fc2);

fc2 = Conv2D(3, (15, 15), padding = 'valid', name = 'fc_pooling')(fc2);

fc2_norm = K.l2_normalize(fc2, axis = 3);

est = tf.reduce_sum(fc2_norm, axis = (1, 2));
est = K.l2_normalize(est);

FC_model = Model(inputs = vgg16_model.input, outputs = est);
Run Code Online (Sandbox Code Playgroud)

然后是错误:

ValueError:模型的输出张量必须是TensorFlow的输出Layer(因此保持过去的图层元数据).找到:Tensor("l2_normalize_3:0",shape =(?,3),dtype = float32)

我注意到没有将fc2层传递给这些函数,模型工作正常:

FC_model = Model(inputs = vgg16_model.input, outputs = fc2);
Run Code Online (Sandbox Code Playgroud)

有人可以向我解释这个问题以及如何解决这个问题的一些建议吗?

Phạ*_*iển 30

我找到了解决问题的方法.对于遇到相同问题的任何人,您可以使用Lambda层来包装您的tensorflow操作,这就是我所做的:

from tensorflow.python.keras.layers import Lambda;

def norm(fc2):

    fc2_norm = K.l2_normalize(fc2, axis = 3);
    illum_est = tf.reduce_sum(fc2_norm, axis = (1, 2));
    illum_est = K.l2_normalize(illum_est);

    return illum_est;

illum_est = Lambda(norm)(fc2);
Run Code Online (Sandbox Code Playgroud)

  • 错误使用`Concatenate`层时遇到了同样的问题:它是`Concatenate()([<previous_layers>])`。如果忘记前导的(()`,则会收到错误消息。 (3认同)

小智 5

我遇到这个问题是因为我在模型中的某个位置添加了 2 个张量,x1+x2而不是使用Add()([x1,x2]).

这解决了问题。