使用opencv,tensorflow和python进行人体检测

Amr*_*Das 0 python opencv image-processing tensorflow

我正在研究一个涉及检测人体的机器人项目,我正在使用张量流和预定义的数据集来创建训练模型.由于我是机器学习的新手,我无法正确获取分类器的输出.我只需要人物检测,并希望避免检测球,笔记本电脑或其他物体.现在我的网络摄像头检测到所有的物体,如球,蝙蝠,笔记本电脑,电视等.我需要的输出只有得分为80%及以上的人.

我用来创建模型的代码是

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image


from utils import label_map_util

from utils import visualization_utils as vis_util

MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'


PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

if not os.path.exists(MODEL_NAME + '/frozen_inference_graph.pb'):
    print ('Downloading the model')
    opener = urllib.request.URLopener()
    opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
    tar_file = tarfile.open(MODEL_FILE)
    for file in tar_file.getmembers():
      file_name = os.path.basename(file.name)
      if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())
    print ('Download complete')
else:
    print ('Model already exists')

detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

import cv2
cap = cv2.VideoCapture(1)


with detection_graph.as_default():
  with tf.Session(graph=detection_graph) as sess:
   ret = True
   while (ret):
      ret,image_np = cap.read()
      image_np_expanded = np.expand_dims(image_np, axis=0)
      image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
      boxes = detection_graph.get_tensor_by_name('detection_boxes:0')      
      scores = detection_graph.get_tensor_by_name('detection_scores:0')
      classes = detection_graph.get_tensor_by_name('detection_classes:0')
      num_detections = detection_graph.get_tensor_by_name('num_detections:0')

      (boxes, scores, classes, num_detections) = sess.run(
          [boxes, scores, classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
      vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),category_index,use_normalized_coordinates=True,line_thickness=8)
      cv2.imshow('image',cv2.resize(image_np,(1280,960)))
      if cv2.waitKey(27) & 0xFF == ord('q'):
          cv2.destroyAllWindows()
          cap.release()
          break
Run Code Online (Sandbox Code Playgroud)

请问有谁可以解释我如何只能检测到准确度分数大于80%的人.

小智 6

正如我从这里的文档中看到的那样,你必须只检查人员类.现在vis_util检查所有课程.您必须if仅为person类添加条件.下面给出了适当的标识符(取自文档). item { name: "/m/01g317" id: 1 display_name: "person" }