Viz*_*zag 2 performance matlab image image-processing
我在MATLAB中处理两个512x512图像,域图像和范围图像.我想要完成的是以下内容:
为此,我编写了以下代码:
RangeImagecolor = imread('input.png'); %input is 512x512
DomainImagecolor = imread('input.png'); %Range and Domain images are identical
RangeImagetemp = rgb2gray(RangeImagecolor);
DomainImagetemp = rgb2gray(DomainImagecolor);
RangeImage = im2double(RangeImagetemp);
DomainImage = im2double(DomainImagetemp);
%For the (k,l)th 8x8 range image block
for k = 1:64
for l = 1:64
minerror = 9999;
min_i = 0;
min_j = 0;
for i = 1:64
for j = 1:64
%here I compute for the (i,j)th domain block, the transformed domain block stored in D_trans
error = 0;
D_trans = zeros(8,8);
R = zeros(8,8); %Contains the pixel values of the (k,l)th range block
for m = 1:8
for n = 1:8
R(m,n) = RangeImage(8*k-8+m,8*l-8+n);
%ApplyTransformation can depend on (k,l) so I can't compute the transformation outside the k,l loop.
[m_dash,n_dash] = ApplyTransformation(8*i-8+m,8*j-8+n);
D_trans(m,n) = DomainImage(m_dash,n_dash);
error = error + (R(m,n)-D_trans(m,n))^2;
end
end
if(error < minerror)
minerror = error;
min_i = i;
min_j = j;
end
end
end
end
end
Run Code Online (Sandbox Code Playgroud)
作为ApplyTransformation的示例,可以使用身份转换:
function [x_dash,y_dash] = Iden(x,y)
x_dash = x;
y_dash = y;
end
Run Code Online (Sandbox Code Playgroud)
现在我面临的问题是计算时间长.上述代码中的计算顺序为64 ^ 5,其顺序为10 ^ 9.这种计算应该在最坏的几分钟或一小时内进行.计算仅50次迭代大约需要40分钟.我不知道为什么代码运行得这么慢.
感谢您阅读我的问题.
您可以使用im2col*将图像转换为列格式,以便每个块形成[64 * 4096]矩阵的列.然后将转换应用于每列并用于bsxfun向量化错误计算.
DomainImage=rand(512);
RangeImage=rand(512);
DomainImage_col = im2col(DomainImage,[8 8],'distinct');
R = im2col(RangeImage,[8 8],'distinct');
[x y]=ndgrid(1:8);
function [x_dash, y_dash] = ApplyTransformation(x,y)
x_dash = x;
y_dash = y;
end
[x_dash, y_dash] = ApplyTransformation(x,y);
idx = sub2ind([8 8],x_dash, y_dash);
D_trans = DomainImage_col(idx,:); %transformation is reduced to matrix indexing
Error = 0;
for mn = 1:64
Error = Error + bsxfun(@minus,R(mn,:),D_trans(mn,:).').^2;
end
[minerror ,min_ij]= min(Error,[],2); % linear index of minimum of each block;
[min_i min_j]=ind2sub([64 64],min_ij); % convert linear index to subscript
Run Code Online (Sandbox Code Playgroud)
说明:
我们的目标是尽可能减少循环次数.为此,我们应该避免矩阵索引,而应该使用矢量化.嵌套循环应转换为一个循环.作为第一步,我们可以创建一个更优化的循环,如下所示:
min_ij = zeros(4096,1);
for kl = 1:4096 %%% => 1:size(D_trans,2)
minerror = 9999;
min_ij(kl) = 0;
for ij = 1:4096 %%% => 1:size(R,2)
Error = 0;
for mn = 1:64
Error = Error + (R(mn,kl) - D_trans(mn,ij)).^2;
end
if(Error < minerror)
minerror = Error;
min_ij(kl) = ij;
end
end
end
Run Code Online (Sandbox Code Playgroud)
我们可以重新排列循环,我们可以将最内部的循环作为外部循环,并将最小值的计算与错误的计算分开.
% Computation of the error
Error = zeros(4096,4096);
for mn = 1:64
for kl = 1:4096
for ij = 1:4096
Error(kl,ij) = Error(kl,ij) + (R(mn,kl) - D_trans(mn,ij)).^2;
end
end
end
% Computation of the min
min_ij = zeros(4096,1);
for kl = 1:4096
minerror = 9999;
min_ij(kl) = 0;
for ij = 1:4096
if(Error(kl,ij) < minerror)
minerror = Error(kl,ij);
min_ij(kl) = ij;
end
end
end
Run Code Online (Sandbox Code Playgroud)
现在,代码以最佳矢量化的方式排列:
Error = 0;
for mn = 1:64
Error = Error + bsxfun(@minus,R(mn,:),D_trans(mn,:).').^2;
end
[minerror ,min_ij] = min(Error, [], 2);
[min_i ,min_j] = ind2sub([64 64], min_ij);
Run Code Online (Sandbox Code Playgroud)
*如果您没有图像处理工具箱,im2col可以在此处找到更有效的实施方案.
*整个计算只需不到一分钟.
| 归档时间: |
|
| 查看次数: |
128 次 |
| 最近记录: |