Nik*_* VJ 1 python json series dataframe pandas
我有一个名为df的熊猫DataFrame。随着df.dtypes我可以在屏幕上打印:
arrival_time object
departure_time object
drop_off_type int64
extra object
pickup_type int64
stop_headsign object
stop_id object
stop_sequence int64
trip_id object
dtype: object
Run Code Online (Sandbox Code Playgroud)
我想保存此信息,以便可以将其与其他数据进行比较,在其他地方进行类型转换,等等。我想将其保存到本地文件中,然后在其他程序无法恢复的地方将其恢复。但是我不知道怎么做。显示各种转换的结果。
df.dtypes.to_dict()
{'arrival_time': dtype('O'),
'departure_time': dtype('O'),
'drop_off_type': dtype('int64'),
'extra': dtype('O'),
'pickup_type': dtype('int64'),
'stop_headsign': dtype('O'),
'stop_id': dtype('O'),
'stop_sequence': dtype('int64'),
'trip_id': dtype('O')}
----
df.dtypes.to_json()
'{"arrival_time":{"alignment":4,"byteorder":"|","descr":[["","|O"]],"flags":63,"isalignedstruct":false,"isnative":true,"kind":"O","name":"object","ndim":0,"num":17,"str":"|O"},"departure_time":{"alignment":4,"byteorder":"|","descr":[["","|O"]],"flags":63,"isalignedstruct":false,"isnative":true,"kind":"O","name":"object","ndim":0,"num":17,"str":"|O"},"drop_off_type":{"alignment":4,"byteorder":"=","descr":[["","<i8"]],"flags":0,"isalignedstruct":false,"isnative":true,"kind":"i","name":"int64","ndim":0,"num":9,"str":"<i8"},"extra":{"alignment":4,"byteorder":"|","descr":[["","|O"]],"flags":63,"isalignedstruct":false,"isnative":true,"kind":"O","name":"object","ndim":0,"num":17,"str":"|O"},"pickup_type":{"alignment":4,"byteorder":"=","descr":[["","<i8"]],"flags":0,"isalignedstruct":false,"isnative":true,"kind":"i","name":"int64","ndim":0,"num":9,"str":"<i8"},"stop_headsign":{"alignment":4,"byteorder":"|","descr":[["","|O"]],"flags":63,"isalignedstruct":false,"isnative":true,"kind":"O","name":"object","ndim":0,"num":17,"str":"|O"},"stop_id":{"alignment":4,"byteorder":"|","descr":[["","|O"]],"flags":63,"isalignedstruct":false,"isnative":true,"kind":"O","name":"object","ndim":0,"num":17,"str":"|O"},"stop_sequence":{"alignment":4,"byteorder":"=","descr":[["","<i8"]],"flags":0,"isalignedstruct":false,"isnative":true,"kind":"i","name":"int64","ndim":0,"num":9,"str":"<i8"},"trip_id":{"alignment":4,"byteorder":"|","descr":[["","|O"]],"flags":63,"isalignedstruct":false,"isnative":true,"kind":"O","name":"object","ndim":0,"num":17,"str":"|O"}}'
----
json.dumps( df.dtypes.to_dict() )
...
TypeError: dtype('O') is not JSON serializable
----
list(xdf.dtypes)
[dtype('O'),
dtype('O'),
dtype('int64'),
dtype('O'),
dtype('int64'),
dtype('O'),
dtype('O'),
dtype('int64'),
dtype('O')]
Run Code Online (Sandbox Code Playgroud)
如何保存和导出/归档熊猫DataFrame的dtype信息?
pd.DataFrame.dtypes返回一个pd.Series对象。这意味着您可以像处理Pandas中的任何常规系列一样操作它:
df = pd.DataFrame({'A': [''], 'B': [1.0], 'C': [1], 'D': [True]})
res = df.dtypes.to_frame('dtypes').reset_index()
print(res)
index dtypes
0 A object
1 B float64
2 C int64
3 D bool
Run Code Online (Sandbox Code Playgroud)
输出到csv / excel / pickle
然后,您可以使用任何方法,你通常会存储一个数据帧,如to_csv,to_excel,to_pickle,等注分配咸菜是不推荐,因为它取决于版本。
输出到json
如果您希望轻松地将其存储和加载为字典,则常用格式为json。如您所见,您需要先转换为str输入:
import json
# first create dictionary
d = res.set_index('index')['dtypes'].astype(str).to_dict()
with open('types.json', 'w') as f:
json.dump(d, f)
with open('types.json', 'r') as f:
data_types = json.load(f)
print(data_types)
{'A': 'object', 'B': 'float64', 'C': 'int64', 'D': 'bool'}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2241 次 |
| 最近记录: |