fal*_*ll2 4 python machine-learning confusion-matrix scikit-learn
所以我正在使用sci-kit学习分类一些数据.我有13个不同的类值/分类来分类数据.现在我已经能够使用交叉验证并打印混淆矩阵.但是,它只显示TP和FP等没有classlabels,所以我不知道哪个类是什么.以下是我的代码和输出:
def classify_data(df, feature_cols, file):
nbr_folds = 5
RANDOM_STATE = 0
attributes = df.loc[:, feature_cols] # Also known as x
class_label = df['task'] # Class label, also known as y.
file.write("\nFeatures used: ")
for feature in feature_cols:
file.write(feature + ",")
print("Features used", feature_cols)
sampler = RandomOverSampler(random_state=RANDOM_STATE)
print("RandomForest")
file.write("\nRandomForest")
rfc = RandomForestClassifier(max_depth=2, random_state=RANDOM_STATE)
pipeline = make_pipeline(sampler, rfc)
class_label_predicted = cross_val_predict(pipeline, attributes, class_label, cv=nbr_folds)
conf_mat = confusion_matrix(class_label, class_label_predicted)
print(conf_mat)
accuracy = accuracy_score(class_label, class_label_predicted)
print("Rows classified: " + str(len(class_label_predicted)))
print("Accuracy: {0:.3f}%\n".format(accuracy * 100))
file.write("\nClassifier settings:" + str(pipeline) + "\n")
file.write("\nRows classified: " + str(len(class_label_predicted)))
file.write("\nAccuracy: {0:.3f}%\n".format(accuracy * 100))
file.writelines('\t'.join(str(j) for j in i) + '\n' for i in conf_mat)
#Output
Rows classified: 23504
Accuracy: 17.925%
0 372 46 88 5 73 0 536 44 317 0 200 127
0 501 29 85 0 136 0 655 9 154 0 172 67
0 97 141 78 1 56 0 336 37 429 0 435 198
0 135 74 416 5 37 0 507 19 323 0 128 164
0 247 72 145 12 64 0 424 21 296 0 304 223
0 190 41 36 0 178 0 984 29 196 0 111 43
0 218 13 71 7 52 0 917 139 177 0 111 103
0 215 30 84 3 71 0 1175 11 55 0 102 62
0 257 55 156 1 13 0 322 184 463 0 197 160
0 188 36 104 2 34 0 313 99 827 0 69 136
0 281 80 111 22 16 0 494 19 261 0 313 211
0 207 66 87 18 58 0 489 23 157 0 464 239
0 113 114 44 6 51 0 389 30 408 0 338 315
Run Code Online (Sandbox Code Playgroud)
正如您所看到的,您无法真正知道哪些列是什么,并且打印也"错位",因此很难理解.
有没有办法打印标签?
pe-*_*rry 12
从文档中,似乎没有这样的选项来打印混淆矩阵的行和列标签.但是,您可以使用参数指定标签顺序labels=...
例:
from sklearn.metrics import confusion_matrix
y_true = ['yes','yes','yes','no','no','no']
y_pred = ['yes','no','no','no','no','no']
print(confusion_matrix(y_true, y_pred))
# Output:
# [[3 0]
# [2 1]]
print(confusion_matrix(y_true, y_pred, labels=['yes', 'no']))
# Output:
# [[1 2]
# [0 3]]
Run Code Online (Sandbox Code Playgroud)
如果你要打印带标签的混淆矩阵,您可以尝试pandas,并设置index及columns的DataFrame.
import pandas as pd
cmtx = pd.DataFrame(
confusion_matrix(y_true, y_pred, labels=['yes', 'no']),
index=['true:yes', 'true:no'],
columns=['pred:yes', 'pred:no']
)
print(cmtx)
# Output:
# pred:yes pred:no
# true:yes 1 2
# true:no 0 3
Run Code Online (Sandbox Code Playgroud)
要么
unique_label = np.unique([y_true, y_pred])
cmtx = pd.DataFrame(
confusion_matrix(y_true, y_pred, labels=unique_label),
index=['true:{:}'.format(x) for x in unique_label],
columns=['pred:{:}'.format(x) for x in unique_label]
)
print(cmtx)
# Output:
# pred:no pred:yes
# true:no 3 0
# true:yes 2 1
Run Code Online (Sandbox Code Playgroud)
重要的是要确保标记混淆矩阵行和列的方式与 sklearn 编码类的方式完全对应。标签的真实顺序可以使用分类器的 .classes_ 属性来揭示。您可以使用下面的代码来准备混淆矩阵数据框。
labels = rfc.classes_
conf_df = pd.DataFrame(confusion_matrix(class_label, class_label_predicted, columns=labels, index=labels))
conf_df.index.name = 'True labels'
Run Code Online (Sandbox Code Playgroud)
第二件事要注意的是你的分类器不能很好地预测标签。正确预测的标签数量显示在混淆矩阵的主对角线上。矩阵中存在非零值,并且某些类根本没有被预测 - 列全部为零。使用默认参数运行分类器然后尝试优化它们可能是个好主意。