保存TIFF堆栈时如何指定颜色图

hol*_*llo 2 python tiff imagej fiji

tifffile在python中使用它来保存3通道tiff堆栈,然后将其读取到ImageJ或FIJI中。这些tiff堆栈在ImageJ中作为复合打开,每个通道分配了一个(可能是默认值)colormap / LUT。但是,分配的颜色不是我的图像有意义的颜色。我的问题是,使用保存图像时,我不知道如何为每个通道指定颜色图tifffile

例如,我要分配以下颜色图:

  • 通道0:灰色
  • ch 1:绿色
  • 通道2:红色

这是我用来保存文件的代码:

# save hyperstack
with tifffile.TiffWriter(filename, bigtiff=False, imagej=True) as tif:
    for i in range(t_stack.shape[0]):
        tif.save(t_stack[i], metadata={'Composite mode': 'composite'})
Run Code Online (Sandbox Code Playgroud)

tiff必须保存有保存通道颜色图信息的元数据,因为我可以在ImageJ中手动编辑颜色分配,然后将其保存,关闭,然后再次打开文件时,它将保留我的手动颜色图分配。因此,我猜测必须有一个元数据标签(也许是颜色图?)可用于指定通道颜色,但是我找不到有关要使用的标签或语法的任何信息。

cgo*_*lke 5

IJMetadata自行创建私有(50839)和IJMetadataByteCounts(50838)TIFF标记,并将它们作为Extratags传递给tifffile.imsave。IJMetadata包含二进制格式的应用程序内部元数据。颜色信息在luts元数据中:

import struct
import numpy
import tifffile


def imagej_metadata_tags(metadata, byteorder):
    """Return IJMetadata and IJMetadataByteCounts tags from metadata dict.

    The tags can be passed to the TiffWriter.save function as extratags.

    """
    header = [{'>': b'IJIJ', '<': b'JIJI'}[byteorder]]
    bytecounts = [0]
    body = []

    def writestring(data, byteorder):
        return data.encode('utf-16' + {'>': 'be', '<': 'le'}[byteorder])

    def writedoubles(data, byteorder):
        return struct.pack(byteorder+('d' * len(data)), *data)

    def writebytes(data, byteorder):
        return data.tobytes()

    metadata_types = (
        ('Info', b'info', 1, writestring),
        ('Labels', b'labl', None, writestring),
        ('Ranges', b'rang', 1, writedoubles),
        ('LUTs', b'luts', None, writebytes),
        ('Plot', b'plot', 1, writebytes),
        ('ROI', b'roi ', 1, writebytes),
        ('Overlays', b'over', None, writebytes))

    for key, mtype, count, func in metadata_types:
        if key not in metadata:
            continue
        if byteorder == '<':
            mtype = mtype[::-1]
        values = metadata[key]
        if count is None:
            count = len(values)
        else:
            values = [values]
        header.append(mtype + struct.pack(byteorder+'I', count))
        for value in values:
            data = func(value, byteorder)
            body.append(data)
            bytecounts.append(len(data))

    body = b''.join(body)
    header = b''.join(header)
    data = header + body
    bytecounts[0] = len(header)
    bytecounts = struct.pack(byteorder+('I' * len(bytecounts)), *bytecounts)
    return ((50839, 'B', len(data), data, True),
            (50838, 'I', len(bytecounts)//4, bytecounts, True))


filename = 'FluorescentCells.tif'
image = tifffile.imread(filename)

grays = numpy.tile(numpy.arange(256, dtype='uint8'), (3, 1))
red = numpy.zeros((3, 256), dtype='uint8')
red[0] = numpy.arange(256, dtype='uint8')
green = numpy.zeros((3, 256), dtype='uint8')
green[1] = numpy.arange(256, dtype='uint8')
ijtags = imagej_metadata_tags({'LUTs': [grays, green, red]}, '>')

tifffile.imsave('test_ijmetadata.tif', image, byteorder='>', imagej=True,
                metadata={'mode': 'composite'}, extratags=ijtags)
Run Code Online (Sandbox Code Playgroud)


小智 5

您可以将多个关键字参数传递给tifffile的imsave函数。它的文档记录不是很好,所以我发现最有用的是读取TiffWriter类中save函数的文档字符串:

https://github.com/blink1073/tifffile/blob/master/tifffile/tifffile.py#L750

对于ImageJ元数据规范,TiffWriter.save然后引用imagej_metadata_tags,您可以在其中查看可以在变量meta_base_types中存储哪些数据类型(第7749行):

https://github.com/blink1073/tifffile/blob/master/tifffile/tifffile.py#L7710

metadata_types = (
    ('Info', b'info', 1, _string),
    ('Labels', b'labl', None, _string),
    ('Ranges', b'rang', 1, _doubles),
    ('LUTs', b'luts', None, _ndarray),
    ('Plot', b'plot', 1, _bytes),
    ('ROI', b'roi ', 1, _bytes),
    ('Overlays', b'over', None, _bytes))
Run Code Online (Sandbox Code Playgroud)

您可以创建LUT,以使用不同的颜色图可视化数据。假设您的数据是uint8,则您需要的LUT的形状应为3个颜色通道的形状(3、256)和256个强度值。因此,对于灰色,绿色和红色的LUT,您需要遵循以下原则:

import numpy as np
import tifffile

# Create a random test image
im_3frame = np.random.randint(0, 255, size=(3, 150, 250), dtype=np.uint8)
# Intensity value range
val_range = np.arange(256, dtype=np.uint8)
# Gray LUT
lut_gray = np.stack([val_range, val_range, val_range])
# Red LUT
lut_red = np.zeros((3, 256), dtype=np.uint8)
lut_red[0, :] = val_range
# Green LUT
lut_green = np.zeros((3, 256), dtype=np.uint8)
lut_green[1, :] = val_range
# Create ijmetadata kwarg
ijmeta = {'LUTs': [lut_gray, lut_red, lut_green]}
# Save image
tifffile.imsave(
    save_name,
    im_rgb,
    imagej=True,
    metadata={'mode': 'composite'},
    ijmetadata=ijmeta,
) 
Run Code Online (Sandbox Code Playgroud)