如何分组并连接 Dataframe Spark Scala 中的列表

Bab*_*abu 5 scala dataframe apache-spark apache-spark-sql

我有一个包含两列数据的数据框,如下所示

+----+-----------------+
|acct|           device|
+----+-----------------+
|   B|       List(3, 4)|
|   C|       List(3, 5)|
|   A|       List(2, 6)|
|   B|List(3, 11, 4, 9)|
|   C|       List(5, 6)|
|   A|List(2, 10, 7, 6)|
+----+-----------------+
Run Code Online (Sandbox Code Playgroud)

我需要如下结果

+----+-----------------+
|acct|           device|
+----+-----------------+
|   B|List(3, 4, 11, 9)|
|   C|    List(3, 5, 6)|
|   A|List(2, 6, 7, 10)|
+----+-----------------+
Run Code Online (Sandbox Code Playgroud)

我试过如下,但似乎不起作用

df.groupBy("acct").agg(concat("device"))

df.groupBy("acct").agg(collect_set("device"))

请让我知道如何使用 Scala 实现这一目标?

Tza*_*har 6

您可以从分解device列开始,然后像以前一样继续 - 但请注意,它可能不会保留列表的顺序(无论如何在任何分组依据中都不能保证):

val result = df.withColumn("device", explode($"device"))
  .groupBy("acct")
  .agg(collect_set("device"))

result.show(truncate = false)
// +----+-------------------+
// |acct|collect_set(device)|
// +----+-------------------+
// |B   |[9, 3, 4, 11]      |
// |C   |[5, 6, 3]          |
// |A   |[2, 6, 10, 7]      |
// +----+-------------------+
Run Code Online (Sandbox Code Playgroud)


Tza*_*har 3

另一个可能比该选项表现更好的选项explode:创建您自己的UserDefinedAggregationFunction,将列表合并到不同的集合中。

您必须UserDefinedAggregateFunction按如下方式扩展:

class MergeListsUDAF extends UserDefinedAggregateFunction {

  override def inputSchema: StructType = StructType(Seq(StructField("a", ArrayType(IntegerType))))

  override def bufferSchema: StructType = inputSchema

  override def dataType: DataType = ArrayType(IntegerType)

  override def deterministic: Boolean = true

  override def initialize(buffer: MutableAggregationBuffer): Unit = buffer.update(0, mutable.Seq[Int]())

  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    val existing = buffer.getAs[mutable.Seq[Int]](0)
    val newList = input.getAs[mutable.Seq[Int]](0)
    val result = (existing ++ newList).distinct
    buffer.update(0, result)
  }

  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = update(buffer1, buffer2)

  override def evaluate(buffer: Row): Any = buffer.getAs[mutable.Seq[Int]](0)
}
Run Code Online (Sandbox Code Playgroud)

并像这样使用它:

val mergeUDAF = new MergeListsUDAF()

df.groupBy("acct").agg(mergeUDAF($"device"))
Run Code Online (Sandbox Code Playgroud)