减小Keras LSTM型号的尺寸

Anh*_*ham 6 python machine-learning lstm keras recurrent-neural-network

基本上,我正在使用Keras训练LSTM模型,但是当我保存它时,它的大小需要100MB.但是,我的模型的目的是部署到Web服务器以作为API,我的Web服务器无法运行它,因为模型大小太大.在分析了我的模型中的所有参数之后,我发现我的模型有20,000,000参数但15,000,000参数未经训练,因为它们是字嵌入.有没有办法可以通过删除15,000,000参数来最小化模型的大小,但仍保留模型的性能?这是我的模型代码:

def LSTModel(input_shape, word_to_vec_map, word_to_index):


    sentence_indices = Input(input_shape, dtype="int32")

    embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)


    embeddings = embedding_layer(sentence_indices)


    X = LSTM(256, return_sequences=True)(embeddings)
    X = Dropout(0.5)(X)
    X = LSTM(256, return_sequences=False)(X)
    X = Dropout(0.5)(X)    
    X = Dense(NUM_OF_LABELS)(X)
    X = Activation("softmax")(X)

    model = Model(inputs=sentence_indices, outputs=X)

    return model
Run Code Online (Sandbox Code Playgroud)

Aec*_*lys 3

定义要在函数外部保存的图层并为其命名。然后创建两个函数foo()bar()foo()将具有包括嵌入层的原始管道。bar()将只有嵌入层之后的管道部分。相反,您将使用嵌入的尺寸定义新Input()层:bar()

lstm1 = LSTM(256, return_sequences=True, name='lstm1')
lstm2 = LSTM(256, return_sequences=False, name='lstm2')
dense = Dense(NUM_OF_LABELS, name='Susie Dense')

def foo(...):
    sentence_indices = Input(input_shape, dtype="int32")
    embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)
    embeddings = embedding_layer(sentence_indices)
    X = lstm1(embeddings)
    X = Dropout(0.5)(X)
    X = lstm2(X)
    X = Dropout(0.5)(X)    
    X = dense(X)
    X = Activation("softmax")(X)
    return Model(inputs=sentence_indices, outputs=X)


def bar(...):
    embeddings = Input(embedding_shape, dtype="float32")
    X = lstm1(embeddings)
    X = Dropout(0.5)(X)
    X = lstm2(X)
    X = Dropout(0.5)(X)    
    X = dense(X)
    X = Activation("softmax")(X)
    return Model(inputs=sentence_indices, outputs=X)

foo_model = foo(...)
bar_model = bar(...)

foo_model.fit(...)
bar_model.save_weights(...)
Run Code Online (Sandbox Code Playgroud)

现在,您将训练原始foo()模型。然后您可以保存简化bar()模型的权重。加载模型时,不要忘记指定by_name=True参数:

foo_model.load_weights('bar_model.h5', by_name=True)
Run Code Online (Sandbox Code Playgroud)