如何加载多行记录的CSV文件?

Gau*_*pta 7 csv apache-spark pyspark pyspark-sql

我使用Spark 2.3.0。

作为Apache Spark的项目,我正在使用数据集进行处理。当尝试使用spark读取csv时,spark数据帧中的行与csv(请参见此处的示例csv示例)文件中的正确行不对应。代码如下:

answer_df = sparkSession.read.csv('./stacksample/Answers_sample.csv', header=True, inferSchema=True, multiLine=True);
answer_df.show(2)
Run Code Online (Sandbox Code Playgroud)

输出量

+--------------------+-------------+--------------------+--------+-----+--------------------+
|                  Id|  OwnerUserId|        CreationDate|ParentId|Score|                Body|
+--------------------+-------------+--------------------+--------+-----+--------------------+
|                  92|           61|2008-08-01T14:45:37Z|      90|   13|"<p><a href=""htt...|
|<p>A very good re...| though.</p>"|                null|    null| null|                null|
+--------------------+-------------+--------------------+--------+-----+--------------------+
only showing top 2 rows
Run Code Online (Sandbox Code Playgroud)

但是,当我使用熊猫时,它就像一种魅力。

df = pd.read_csv('./stacksample/Answers_sample.csv')
df.head(3) 
Run Code Online (Sandbox Code Playgroud)

输出量

Index Id    OwnerUserId CreationDate    ParentId    Score   Body
0   92  61  2008-08-01T14:45:37Z    90  13  <p><a href="http://svnbook.red-bean.com/">Vers...
1   124 26  2008-08-01T16:09:47Z    80  12  <p>I wound up using this. It is a kind of a ha...
Run Code Online (Sandbox Code Playgroud)

我的观察: Apache spark将csv文件中的每一行都视为数据帧的记录(这是合理的),但是另一方面,大熊猫会智能地(不确定基于哪个参数)找出记录的实际结束位置。

我想知道的问题是,如何指示Spark正确加载数据帧。

如下所示,要加载的数据以两行开始92124为两条记录。

Id,OwnerUserId,CreationDate,ParentId,Score,Body
92,61,2008-08-01T14:45:37Z,90,13,"<p><a href=""http://svnbook.red-bean.com/"">Version Control with Subversion</a></p>

<p>A very good resource for source control in general. Not really TortoiseSVN specific, though.</p>"
124,26,2008-08-01T16:09:47Z,80,12,"<p>I wound up using this. It is a kind of a hack, but it actually works pretty well. The only thing is you have to be very careful with your semicolons. : D</p>

<pre><code>var strSql:String = stream.readUTFBytes(stream.bytesAvailable);      
var i:Number = 0;
var strSqlSplit:Array = strSql.split("";"");
for (i = 0; i &lt; strSqlSplit.length; i++){
    NonQuery(strSqlSplit[i].toString());
}
</code></pre>
"
Run Code Online (Sandbox Code Playgroud)

Jac*_*ski 9

认为您应该使用option("escape", "\"")它,因为它似乎"被用作所谓的引号转义字符

val q = spark.read
  .option("multiLine", true)
  .option("header", true)
  .option("escape", "\"")
  .csv("input.csv")
scala> q.show
+---+-----------+--------------------+--------+-----+--------------------+
| Id|OwnerUserId|        CreationDate|ParentId|Score|                Body|
+---+-----------+--------------------+--------+-----+--------------------+
| 92|         61|2008-08-01T14:45:37Z|      90|   13|<p><a href="http:...|
|124|         26|2008-08-01T16:09:47Z|      80|   12|<p>I wound up usi...|
+---+-----------+--------------------+--------+-----+--------------------+
Run Code Online (Sandbox Code Playgroud)


Gau*_*pta 6

经过几个小时的努力,我终于找到了解决方案。

分析: 提供的数据转储Stackoverflowquote(")被另一个转义quote(")。而且由于spark使用了slash(\)我没有通过的转义字符的默认值,因此最终导致给出无意义的输出。

更新的代码

answer_df = sparkSession.read.\
    csv('./stacksample/Answers_sample.csv', 
        inferSchema=True, header=True, multiLine=True, escape='"');

answer_df.show(2)
Run Code Online (Sandbox Code Playgroud)

请注意中使用escape参数csv()

输出量

+---+-----------+-------------------+--------+-----+--------------------+
| Id|OwnerUserId|       CreationDate|ParentId|Score|                Body|
+---+-----------+-------------------+--------+-----+--------------------+
| 92|         61|2008-08-01 20:15:37|      90|   13|<p><a href="http:...|
|124|         26|2008-08-01 21:39:47|      80|   12|<p>I wound up usi...|
+---+-----------+-------------------+--------+-----+--------------------+
Run Code Online (Sandbox Code Playgroud)

希望它能帮助其他人并为他们节省一些时间。