Gui*_*ier 10 implementation open-source coding-style lstm pytorch
我想自己创建一个LSTM类,但是,我不想再从头开始重写经典的LSTM函数.
挖掘PyTorch的代码,我只找到一个涉及至少3-4个继承类的脏实现:https : //github.com/pytorch/pytorch/blob/98c24fae6b6400a7d1e13610b20aa05f86f77070/torch/nn/modules/rnn.py#L323 https://github.com/pytorch/pytorch/blob/98c24fae6b6400a7d1e13610b20aa05f86f77070/torch/nn/modules/rnn.py#L12 https://github.com/pytorch/pytorch/blob/98c24fae6b6400a7d1e13610b20aa05f86f77070/torch/nn/_functions/rnn的.py#L297
某个LSTM的干净PyTorch实现是否存在?任何链接都会有帮助.例如,我知道TensorFlow中存在LSTM的干净实现,但我需要派生一个PyTorch实现.
一个明显的例子,我正在寻找的是一个如下所示的实现,但是在PyTorch中:https: //github.com/hardmaru/supercell/blob/063b01e75e6e8af5aeb0aac5cc583948f5887dd1/supercell.py#L143
Ric*_*ard 12
我找到的最佳实现是
https://github.com/pytorch/benchmark/blob/master/benchmarks/lstm_variants/lstm.py
它甚至实现了四种不同的循环丢失变体,这非常有用!
如果你把丢失部分带走了
import math
import torch as th
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.i2h = nn.Linear(input_size, 4 * hidden_size, bias=bias)
self.h2h = nn.Linear(hidden_size, 4 * hidden_size, bias=bias)
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.hidden_size)
for w in self.parameters():
w.data.uniform_(-std, std)
def forward(self, x, hidden):
h, c = hidden
h = h.view(h.size(1), -1)
c = c.view(c.size(1), -1)
x = x.view(x.size(1), -1)
# Linear mappings
preact = self.i2h(x) + self.h2h(h)
# activations
gates = preact[:, :3 * self.hidden_size].sigmoid()
g_t = preact[:, 3 * self.hidden_size:].tanh()
i_t = gates[:, :self.hidden_size]
f_t = gates[:, self.hidden_size:2 * self.hidden_size]
o_t = gates[:, -self.hidden_size:]
c_t = th.mul(c, f_t) + th.mul(i_t, g_t)
h_t = th.mul(o_t, c_t.tanh())
h_t = h_t.view(1, h_t.size(0), -1)
c_t = c_t.view(1, c_t.size(0), -1)
return h_t, (h_t, c_t)
Run Code Online (Sandbox Code Playgroud)
PS:存储库包含更多LSTM和其他RNN的变体:
https://github.com/pytorch/benchmark/tree/master/benchmarks.
看看吧,也许你想到的扩展已经存在!
编辑:
如评论中所述,您可以将LSTM单元格包装在上面以处理顺序输出:
import math
import torch as th
import torch.nn as nn
class LSTMCell(nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
# As before
def reset_parameters(self):
# As before
def forward(self, x, hidden):
if hidden is None:
hidden = self._init_hidden(x)
# Rest as before
@staticmethod
def _init_hidden(input_):
h = th.zeros_like(input_.view(1, input_.size(1), -1))
c = th.zeros_like(input_.view(1, input_.size(1), -1))
return h, c
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
super().__init__()
self.lstm_cell = LSTMCell(input_size, hidden_size, bias)
def forward(self, input_, hidden=None):
# input_ is of dimensionalty (1, time, input_size, ...)
outputs = []
for x in torch.unbind(input_, dim=1):
hidden = self.lstm_cell(x, hidden)
outputs.append(hidden[0].clone())
return torch.stack(outputs, dim=1)
Run Code Online (Sandbox Code Playgroud)
我没有测试代码,因为我正在使用convLSTM实现.如果出现问题,请告诉我.