Luc*_*o91 0 r glmnet roc logistic-regression
我将逻辑回归模型拟合到R中的训练数据集,更具体地说是具有L1惩罚的LASSO回归.我用了这个glmnet包.模型的代码如下所示.
t1 <- Sys.time()
glmnet_classifier <- cv.glmnet(x = dtm_train_tfidf,
y = tweets_train[['sentiment']],
family = 'binomial',
# L1 penalty
alpha = 1,
# interested in the area under ROC curve
type.measure = "auc",
# 5-fold cross-validation
nfolds = 5,
# high value is less accurate, but has faster training
thresh = 1e-3,
# again lower number of iterations for faster training
maxit = 1e3)
print(difftime(Sys.time(), t1, units = 'mins'))
preds <- predict(glmnet_classifier, dtm_test_tfidf, type = 'response')[ ,1]
Run Code Online (Sandbox Code Playgroud)
现在我想绘制ROC曲线.但是,我无法弄清楚如何准确地绘制它.
当我plot(glmnet_classifier)这是我收到的:

由于这不是Roc曲线,我想知道是否有人知道如何在R中绘制它?我已经提到了ROCR包,但它给了我一个错误:
roc.perf = performance(preds, measure = "tpr", x.measure = "fpr")
Run Code Online (Sandbox Code Playgroud)
有人可以帮忙吗?非常感谢你!
library(pROC)
data("aSAH")
fit <- glm(outcome ~ gender + age + wfns + s100b , data = aSAH, family = binomial)
roc(aSAH$outcome, as.vector(fitted.values(fit)), percent=F, boot.n=1000, ci.alpha=0.9, stratified=FALSE, plot=TRUE, grid=TRUE, show.thres=TRUE, legacy.axes = TRUE, reuse.auc = TRUE,
# print.thres = c(0.30,0.35, 0.40, 0.45,0.48, 0.50,0.55, 0.60),#
print.auc = TRUE, print.thres.col = "blue", ci=TRUE, ci.type="bars", print.thres.cex = 0.7, main = paste("ROC curve using","(N = ",nrow(aSAH),")") )
Run Code Online (Sandbox Code Playgroud)
我希望它有所帮助;)