jef*_*ale 6 encoding machine-learning ordinal scikit-learn sklearn-pandas
我正在尝试使用 category_encoders.OrdinalEncoder 将类别映射到熊猫数据框中的整数。但是我在没有任何其他有用提示的情况下收到以下错误。
TypeError: 'NoneType' object is not iterable
Run Code Online (Sandbox Code Playgroud)
代码在没有尝试映射的情况下运行良好,但我想要映射。
代码:
import category_encoders as ce
ordinal_cols = [
"ExterQual",
]
ordinal_cols_mapping = [{
"ExterQual": {
'Ex': 5,
'Gd': 4,
'TA': 3,
'Fa': 2,
'Po': 1,
'NA': NaN
}},
]
encoder = ce.OrdinalEncoder( mapping = ordinal_cols_mapping, return_df = True, cols = ordinal_cols,)
df_train = encoder.fit_transform(train_data)
print(df_train)
Run Code Online (Sandbox Code Playgroud)
我做错了什么?
映射:字典列表 用于编码的类到标签的映射,可选。
http://contrib.scikit-learn.org/categorical-encoding/ordinal.html
全栈跟踪:
---------------------------------------------------------------------------
TypeError
Traceback (most recent call last)
<ipython-input-56-4944c8d41d07> in <module>()
150 # use the Ordinal Encoder to map the ordinal data to interval and then fit transform
151 encoder = ce.OrdinalEncoder( return_df = True, cols = ordinal_cols, mapping = ordinal_cols_mapping) #NaNs get -1, mapping = ordinal_cols_mapping removed due to error
--> 152 X = encoder.fit_transform(X)
/opt/conda/lib/python3.6/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
515 if y is None:
516 # fit method of arity 1 (unsupervised transformation)
--> 517 return self.fit(X, **fit_params).transform(X)
518 else:
519 # fit method of arity 2 (supervised transformation)
/opt/conda/lib/python3.6/site-packages/category_encoders/ordinal.py in fit(self, X, y, **kwargs)
130 cols=self.cols,
131 impute_missing=self.impute_missing,
--> 132 handle_unknown=self.handle_unknown
133 )
134 self.mapping = categories
/opt/conda/lib/python3.6/site-packages/category_encoders/ordinal.py in ordinal_encoding(X_in, mapping, cols, impute_missing, handle_unknown)
249 for switch in mapping:
250 X[str(switch.get('col')) + '_tmp'] = np.nan
--> 251 for category in switch.get('mapping'):
252 X.loc[X[switch.get('col')] == category[0], str(switch.get('col')) + '_tmp'] = str(category[1])
253 del X[switch.get('col')]
TypeError: 'NoneType' object is not iterable
Run Code Online (Sandbox Code Playgroud)
示例数据:
0 0
1 1
2 0
3 1
4 0
Name: ExterQual, dtype: int64
Run Code Online (Sandbox Code Playgroud)
您使用的'mapping'参数错误。
格式应该是:
'mapping'param 应该是内部应该包含键的list位置,并且键应该具有格式元组列表 作为值。dictsdicts'col''mapping''mapping'(original_label, encoded_label)
像这样的东西:
ordinal_cols_mapping = [{
"col":"ExterQual",
"mapping": [
('Ex',5),
('Gd',4),
('TA',3),
('Fa',2),
('Po',1),
('NA',np.nan)
]},
]
Run Code Online (Sandbox Code Playgroud)
那么就不需要'cols'单独设置param了。列名称将从参数中使用'mapping'。
只需这样做:
encoder = OrdinalEncoder(mapping = ordinal_cols_mapping,
return_df = True)
df_train = encoder.fit_transform(train_data)
Run Code Online (Sandbox Code Playgroud)
希望这能够清楚地表明这一点。